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Abstract
We report on a study aimed at generating and characterizing stochastic models of the porous
microstructure of chalk. Such models are constructed exclusively from limited morphological
information obtained from 2D backscatter SEM images of the microstructure. Two different
stochastic reconstruction methods are considered: conditioning and truncation of Gaussian
random fields (GRF) and simulated annealing (SA). The potential of initializing the SA
reconstruction with input generated using the GRF method is evaluated. It is found that this
practice accelerates significantly the rate of convergence of SA reconstruction. This finding is
important because the main advantage of SA method, namely its ability to impose a variety of
reconstruction constraints, is usually compromised by its very slow rate of convergence.

A detailed description of the chalk microstructure in the form of 3D volume data is
essential for the prediction of petrophysical properties from first principles. Here we first
consider the prediction of absolute permeability and formation factor directly from such
information. We then consider the prediction of absolute permeability, formation factor,
mercury-air drainage capillary pressure curve and resistivity index vs. water saturation
relationship using approximate network models constrained by information (pore and throat
size distributions, coordination number) obtained from geometric and topological analysis of
the reconstructed pore networks. Such information is extracted from the 3D volume data
using morphological skeletonization and pore space partitioning methods. Very good
agreement between the predicted and measured data is found for a sample of North Sea chalk.
On the basis of these findings, it is concluded that (a) stochastic reconstruction reproduces the
essential features of pore geometry and connectivity of the sample under study, and (b) the
network modeling approach used preserves the essential features of pore geometry and
connectivity of the reconstructed pore space.

1. Introduction
By comparison to methods based on direct solution of the relevant transport equations in
complex 3D pore geometries (e.g., Stokes' equation for single phase flow), network models
provide a computationally efficient way to predict a variety of petrophysical properties from
pore structure information. The requisite information (pore and throat shape and size
distributions, pore-to-pore connectivity and spatial correlation) is, however, quite difficult to
determine. A description of the pore space of the medium under consideration in the form of
3D volume data is required for both direct computation of transport properties and for
extracting key geometric and topological parameters needed by network models. X-ray
computed microtomography (1-4) can provide good quality volume images of the pore space.
Unfortunately, this technique is not suited for routine application. Most importantly, its
resolution is not sufficient to image the sub-micron size pores that are abundant in chalk. In
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the absence of experimental 3D volume data, 3D stochastic reconstruction from limited
statistical information obtainable from 2D microscopic images is a viable alternative. For the
case of chalk, whose microstructure is too complex to reproduce by explicit modeling of the
grain depositional and diagenetic processes (5), stochastic reconstruction is also the only
alternative.

The conditioning and truncation of Gaussian random fields (GRF) is a widely used
stochastic reconstruction technique (e.g., 6-12). The approach is mathematically elegant and
computationally efficient, but unfortunately limited to imposing the void fraction (porosity)
and pore-pore autocorrelation function of the reference (real) medium as the only
reconstruction constraints. Much greater flexibility is offered by the simulated annealing (SA)
method (13-16). Using this method, Yeong and Torquato (13) imposed the pore-phase two-
point correlation and lineal path functions as constraints in the reconstruction of a
Fontainebleau sandstone sample. Manwart et al. (14) reconstructed Berea and Fontainebleau
sandstone samples from information on the pore-phase two-point correlation function, pore-
phase lineal path function, and pore size distribution function. Liang et al. (15) imposed the
"neighborhood rank" distribution together with two-point correlation function. In a recent
study using the SA technique, Talukdar et al. (16) showed that the solid phase chord
distribution function contains additional information that is critical for the reconstruction of
the morphology of particulate media exhibiting short-range order. They confirmed this
finding by successfully reconstructing the microstructure of a pack of irregular silica particles.
Despite its flexibility to include an arbitrary number of reconstruction constraints, the SA
method is limited by slow convergence. This makes the reconstruction of large samples (2563

or more voxels) impractical on single-processor computers.
With the exception of a recent study by Bekri et al. (11), stochastic reconstruction and

network modeling techniques have not been previously used in the study of chalk reservoirs.
While Bekri et al. have demonstrated the feasibility of this approach for predicting the
petrophysical properties of chalk samples, it is important to consider whether or not further
refinement is possible, given recent advances in pore space characterization techniques and
software (Liang et al., 17). This task is undertaken in this study.

In this paper, we study stochastic replicas of the microstructure of a chalk sample
generated by the GRF and SA techniques from porosity and autocorrelation function
information. The paper is organized as follows. In Section 2 we briefly review the definitions
of statistical functions used to describe the morphology of a microstructure and describe the
algorithms used to reconstruct it from limited morphological information. In Section 3 we
briefly describe the laboratory measurements conducted to determine petrophysical properties
and obtain morphological parameters required as input to the reconstruction algorithms. In
Section 4 we describe the reconstruction results confirming that the GRF reconstruction can
be used as input to the SA method in order to refine the reconstruction and accelerate its
convergence. In Section 5 we briefly describe the methods used to calculate various
petrophysical properties of the chalk sample (permeability, formation factor, mercury-air
capillary pressure and resistivity index vs. saturation relationships). In Section 6 we compare
model predictions to experimental results. We summarize in Section 7 with concluding
remarks on the significance of our findings.

2. Stochastic reconstruction from limited morphological information
2.1. Morphological descriptors of the porous microstructure
The structure of a porous material is completely defined in terms of the binary phase function

)r(Z
r

, which takes the value of unity if a point r
r

 in space belongs to the void phase and the
value of zero otherwise. For a statistically homogeneous medium, the void fraction (porosity),
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φ , and the autocorrelation function of the void phase, )u(Rz
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, are formally defined as the first
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where angular brackets denote statistical averages and u
r

 is a lag vector. For an isotropic
porous medium, φ is a constant and )u(Rz

r
 is only a function of the modulus of the lag

vector, i.e., )u(R)u(R zz =
r

. The function )u(Rz  may be determined from cross-sectional
images of the pore space or from small-angle scattering experiments. Its slope at the origin is
related to the specific surface area (the interfacial area per unit volume) s, which for digitized
media is given by (13):
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z2
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dR

6s
=

−−= φφ . [3]

Another important morphological descriptor is the correlation length λ , which is defined as
the integral of the autocorrelation function,

∫
∞

=
0

z du)u(Rλ .  [4]

2.2.  Reconstruction of porous media by the Gaussian Random Field method
Detailed descriptions of the GRF technique may be found elsewhere (e.g., 6-8). Briefly, the
method utilizes as input the target porosity φ  and the void phase autocorrelation function

)u(Rz

r
, calculated from binary 2D images of the real chalk sample (cf. Eqs. [1]-[2]). The

latter function is computed along the two orthogonal directions only. The basic idea behind
the GRF method is to generate values of the phase function )r(Z

r
 on a cubic grid of fixed size

(e.g., 2563 voxels) in a manner that satisfies the target porosity and autocorrelation function.
The reconstruction starts from a realization of a continuous 3D uncorrelated Gaussian field.
This uncorrelated field is subsequently passed through a linear filter that introduces spatial
correlation. The linear filter is constructed from the target porosity and autocorrelation
function so that the requisite binary field )r(Z

r
 is obtained by a final thresholding operation.

2.3.  Reconstruction of porous media by the Simulated Annealing method
The stochastic reconstruction of porous media by simulated annealing has been advanced by
Yeong and Torquato (13). The main idea behind this simple but powerful technique is to
gradually transform an unstructured ("high-energy") configuration of solid and void pixels
into a "minimum-energy" configuration, where "energy" is measured in terms of deviations
from a set of target, experimentally determined, functions conveying morphological
information, e.g., )u(Rz . This is a stochastic optimization problem with an objective function
generally defined in terms of n reference functions as:
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where, nf  and nf
~  are the simulated and reference functions, respectively. For the purposes of

this work, the reference functions imposed are the pore-pore autocorrelation functions along
the three orthogonal directions, )u(R

xz , )u(R
yz  and )u(R

Zz . Each reference function nf
~  is

matched to a maximum lag max
nu .

The simulation begins by randomly designating fractions φ and (1-φ) of void and solid
phase pixels, respectively, on a grid of size N3. At each iteration step k, a void and a solid
pixel are chosen at random and their phase function values are interchanged. This interchange
slightly modifies the functions nf  and therefore changes the energy of the system while
preserving the porosity. A pixel interchange is accepted with a probability ap  given by the
Metropolis rule (18),



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>
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=
− 0Eife
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∆

∆
, [5]

where )k()1k()k( EEE −= +∆  and )k(T  is a control parameter representing the "temperature"
of the system (13). The starting value and the rate of reduction of T are governed by an
annealing schedule. This schedule should be such that a global optimum is achieved as
quickly as possible. In practice, T is reduced by a factor λ after a predefined number of
interchanges, referred to as a Markov chain. If rapid convergence is expected, a dynamic
schedule, which takes into account the rapid fluctuations in the evolving energy in updating
the system temperature T should be preferred over a static one where T decreases
monotonically. Otherwise, there is a real possibility that the system will be trapped at a local
energy minimum, unless T is decreased very slowly. The following formula for updating T
was adopted in this work (19):















=

E
E

,Min,Max min
maxmin λλλ , [6]

where λmin and λmax are the minimum and maximum allowable reduction factors, respectively,
and are specified by the user. In this approach, for each Markov chain, the lowest and average
energy values reached, minE  and E , are used to compute the reduction factor λ. The system
temperature is then updated as,

)1m)(1(
oeTT +−= λ , [7]

where, To is the starting temperature and m is the number of Markov chains after a total of k
interchanges. This approach permits estimation of the starting temperature from the initial
behavior of the energy function. Accordingly, the mean change in the energy function for ko

initial iterations is first evaluated:

∑
=

=
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1k

)k(

o

E
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1

E ∆∆ . [8]

The starting temperature To is then estimated from the following expression for a given initial
acceptance probability o

ap ,

oT
E

o
a ep

∆−
= .   [9]

All results obtained in this work were obtained with ok = 100, o
ap  = 0.5 and m = 11500. It

should be kept in mind that the choice of these parameters is highly system-specific (19).
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2.4.  Hybrid GRF/SA reconstruction
The simulated annealing algorithm is very slow because of the large number of unsuccessful
voxel interchanges, especially at low temperatures. For comparison, a GRF reconstruction of
size 2563 takes only a little more than an hour on a lightly loaded IBM RS6000 UNIX
workstation, whereas a SA reconstruction of this size takes several days. From the point of
view of obtaining a realistic replica of a microstructure, the SA method is, however, preferred
because it can accommodate additional reconstruction constraints. It is therefore worth
exploring the potential time saving that may arise from initiating the SA reconstruction with a
GRF-generated instead of a random configuration.

3. Laboratory measurements
3.1. Target image and morphological parameters
The GRF and SA methods were used to reconstruct a high porosity, low permeability North
Sea chalk sample. The reference (target) porosity and autocorrelation function were obtained
from a single backscatter SEM image of size 512x512 pixels, acquired at 1500x magnification
and providing a pixel resolution of 0.136x0.136 µm2. The image was captured from a thin
section of approximate size 10x10x1 mm3 that was cut off from a cleaned and dried core
sample and then impregnated with epoxy under vacuum. A binary image was obtained by
setting all pixels above a threshold value to zero (Fig. 1a). The porosity of the binary image
was 0.309. The target autocorrelation function was calculated from the two-point correlation
function S2(u) from the equation:

)(
)u(S

)u(R 2

2
2

Z φφ
φ

-
−

= . [10]

This function was calculated along the two orthogonal directions. The x- and y-direction
autocorrelation functions are shown in Fig. 1(b) together with the average. The average
autocorrelation function for this sample corresponds well with those reported by Bekri et al.
(11) for similar North Sea chalk samples.
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Fig. 1(a) Back-scatter SEM image of a North Sea chalk sample. Image size is 512x512 pixels (70x70 µm2).
The image is thresholded segmenting pore (black) and solid (white). Image porosity is 0.309. (b) Autocorrelation
function of the image.
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The correlation length was calculated using Eq. [4] and found equal to 6.68 pixels or 0.91
µm, a value close to those reported by Bekri et al. (11). The specific surface area of the
sample calculated from the binary image using Eq. [3] is 1.3 µm-1. This value differs
significantly from the value obtained by mercury intrusion porosimetry (MIP), which is 4.75
µm-1. This discrepancy is expected, considering the limited resolution (0.136 µm/pixel) of the
image data. The magnitude of specific surface area is dependent on the size of the "probe"
used to measure it. Since MIP detects pore volume invaded at capillary pressures
corresponding to equivalent cylindrical pore radii smaller than 0.136 µm, it is expected that
MIP will yield a higher specific surface area.

3.2. Petrophysical properties
Porosity, absolute permeability and capillary pressure were measured in the laboratory using
standard laboratory equipment. The porosity of the chalk sample was measured on standard
size dry core using a helium porosimeter and found equal to 0.3, in good agreement with the
image data. A constant head permeameter with a Hassler cell was used to measure the
permeability to air and brine. The absolute air and brine permeabilities were 1.35 mD and
0.64 mD, respectively. The brine permeability was measured using formation brine saturated
with calcite to avoid dissolution of chalk in the brine and is believed that deposition of calcite
on pore walls may have contributed to the lower permeability to brine.

The oil (decane)-water (formation brine) capillary pressure was measured in a centrifuge
(Beckman Model LH-M Ultracentrifuge). The drainage capillary pressure curve is shown in
Fig. 2. The residual water saturation is shown to be about 0.3 at Pc ≈ 5 bar, the maximum
capillary pressure reached in the centrifuge without core damage. This value is considerably
higher than 0.1, the value typical attributed to the "irreducible" water saturation of North Sea
chalk. Mercury porosimetry measurements were conducted using a Carlo Erba Porosimeter
2000. Before the measurement, the chalk sample was dried for about one day at 60oC. It was
then evacuated to a pressure below 10-4 mm Hg until a constant weight at room temperature
was observed. The mercury-air capillary pressure was calculated from intrusion mercury
volume versus pressure data and is included in Fig. 2. The two curves cannot be brought into
coincidence by scaling with the ratio of the product θσ cos  of the two fluid pairs. This
indicates significant differences in fluid distribution at the pore scale for the same value of
wetting fluid saturation.
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Fig. 2Oil-water and mercury-air capillary pressures of the target chalk sample obtained from centrifuge and
mercury porosimetry measurements respectively.
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Fig. 3Pore and throat size distributions of the target chalk sample obtained from mercury porosimetry
measurement assuming pores and throats have cylindrical shape. Mean throat and pore radii are 0.27 and 0.73
µm respectively.

Mercury intrusion and extrusion data provide information about the sizes of throats and
pores in the chalk sample. The cumulative distribution of pore volume by pore throat size is
obtained from the intrusion data. Similarly, the retraction data provide an estimate of the
cumulative distribution of pore volume by pore size. It is understood that these estimates are
compromised by pore space accessibility limitations and, for the case of retraction data,
permanent trapping of mercury (20). An equivalent cylindrical capillary radius is obtained
from capillary pressure. The relationship of radius of pore or throat with capillary pressure is
expressed by the well-known Young-Laplace equation of capillarity,

r
cos2

Pc
θσ

= , [11]

where, r is the pore or throat radius, σ is the mercury surface tension, θ is the contact angle
and cP  is the retraction or intrusion capillary pressure. The pore and throat radius
distributions are calculated considering a surface tension of 480 dyne/cm and a contact angle
of 140o for intrusion and 120o for extrusion. The resulting distributions are shown in Fig. 3.
As can be observed, there is considerable overlap between the pore and throat sizes. The mean
radius of the throat size distribution is 0.27 µm and that for pore size distribution is 0.73 µm.

4. Reconstruction results
4.1. GRF and SA reconstructions of a 1003 sample
The potential of hybrid GRF/SA reconstruction was tested on a sample containing 1003

voxels. Three cases were considered. In Case 1, the SA method is used with an initial
configuration that corresponds to a cube of size 1003 voxels extracted from a GRF-generated
realization of size 2563 voxels. In this case annealing was started at high initial temperature
allowing the system to "melt". Case 2 differs from Case 1 in that annealing was started at low
initial temperature preventing "melting" of the system. The initial energy for Cases 1 and 2
was 0.322 and the reconstruction was completed as soon as the energy fell below 10-5 (see
Table 1). In Case 3, the conventional SA method was applied, with the annealing process
starting at high initial temperature from a random, uncorrelated configuration.
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Fig. 4Target and reconstructed (1003 sample) autocorrelation functions; (a) x-direction; (b) y-direction. Empty
circles represent target autocorrelation function, broken and solid lines represent autocorrelation functions of the
GRF-generated and hybrid GRF/SA-generated (Case 2) media respectively.

As a result of further reduction of energy in the system by SA method, improved match of
the autocorrelation functions in all directions is observed for Cases 1 and 2 by comparison to
the initial, GRF-generated configuration (see Fig. 4). Note that the initial configuration (a sub-
volume from a GRF-generated realization of size 2563 voxels) does not match the target
functions, whereas the complete (2563 voxels) GRF realization does (see below).

The reduction of energy in the system by SA yields better reconstruction. Fig. 5 presents
sections through the reconstructed microstructures for the three cases. A section of the target
image (taken from Fig. 1(a)) is shown for comparison in Fig. 5(a). Visually, the images look
alike, but a closer inspection reveals subtle differences in the shape of the rock-pore interface
and the number of small void and solid features.

The evolution of energy and temperature for the three cases is presented in Fig. 6. For Case
2 and Case 3, a nearly exponential decrease in energy and temperature is observed. For Case
1, however, the energy initially builds up in the system as the system "melts" during cooling.
Notice how temperature fluctuates during the energy build up. This is due to the dynamic
nature of the annealing schedule, which takes into account the abrupt changes in the evolving
energy function.
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From the point of view of computational efficiency, initialization of SA with a GRF-
generated, instead of an uncorrelated random configuration, seems promising. Table 1 shows
some of the important simulated annealing parameters. The simulations were performed on an
IBM RS6000 SP Model 9076-260 computer. The conventional SA reconstruction required
5.89 CPU hours (22.7 million iterations) to reconstruct a 1003 sample, but only 3.88 hours
(15.7 million iterations) when the annealing process was started from GRF reconstruction at
low initial temperature. For a larger model (e.g., 2563 voxels), the savings in CPU time would
be considerably more significant. It should be noted here that there is no gain if the annealing
process is started at high initial temperature.

(a)  (b)  (c)

(d)   (e)
Fig. 5Reconstruction of 1003 sample; (a) target image (100x100 pixels taken from Fig. 1(a)). Typical sections
through reconstructed media; (b) GRF-generated; (c) hybrid GRF/SA (Case 1); (d) hybrid GRF/SA (Case 2); (e)
Conventional SA (Case 3). Pores are in black.
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Fig. 6Evolution of energy and temperature for the three simulated annealing reconstruction cases (Case 1, 2
and 3). For clarity, volume of data has been reduced.



Talukdar et al., Network Modeling as a Tool for Petrophysical Measurements in Chalk

Proceedings of the 6th Nordic Symposium on Petrophysics
15-16 May 2001, NTNU, Trondheim, Norway

www.ipt.ntnu.no/nordic

1010

Table 1Comparison of the SA parameters for construction of a 1003 sample

Simulated annealing reconstruction cases (target energy 10-5)
Case 1 Case 2 Case 3

Energy at start 0.322 0.322 7.80
Temperature at start 2.52E-05 3.30E-06 6.76E-06
CPU time (hours) 5.68 3.88 5.89
Total iterations (millions) 22.37 15.70 22.70
Convergence temperature 7.27E-17 1.29E-14 3.64E-17
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Fig. 7Target and reconstructed (2563 sample) autocorrelation functions; (a) x-direction; (b) y-direction. Empty
circles represent target autocorrelation function, broken and solid lines represent autocorrelation functions of the
GRF-generated (Case 4) and hybrid GRF/SA-generated (Case 5) media respectively.

4.2. GRF and SA reconstructions of a 2563 sample
A reconstructed porous medium of size 1003 voxels is not sufficiently large for obtaining
reliable estimates of macroscopic properties, such as, permeability, resistivity index etc. For
this reason, two realizations of size 2563 voxels were generated. The first one (Case 4) was
reconstructed using the GRF method. Reconstruction of this size by SA method even using
only autocorrelation function seems impractical at the present time due to limitations in
computer speed. We therefore adopted the new hybrid technique described in Section 2.4 and
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exemplified in Section 4.1 (Case 2). We refer to this realization as Case 5. The starting energy
(after GRF reconstruction) calculated from Eq. 4 was 0.0283. We reduced this energy by an
order of magnitude (0.0026) in about 9 hours on an IBM RS6000 SP Model 9076-260
computer. Since the annealing was started at low initial temperature, the energy decreased
gradually and no "melting" took place. For this modest reduction in energy, we observed an
improved match of the autocorrelation function (see Fig. 7) and a "smoother" image (see Fig.
8). A 3D representation of the reconstructed chalk (Case 5) is shown in Fig. 9.

It is interesting to note how other measures of the morphology of the chalk microstructure,
not imposed as constraints on the reconstruction process, are reproduced in the models.
Application of the SA method provided a better match between the chord distribution
functions of the target image and the reconstructed sample. Fig. 10 shows solid- and pore-
phase chord distribution functions along the x-direction for the target image and the two
reconstructed samples (Cases 4 and 5). Similar results were obtained in other directions and
hence not shown.

          
(a) (b) (c)

Fig. 8Reconstruction of 2563 sample; (a) target image (256x256 pixels taken from Fig. 1(a)). Typical sections
through reconstructed media; (b) GRF-generated (Case 4); (c) hybrid GRF/SA-generated (Case 5). Pores are in
black.

Fig. 9Pore spaces (blue) of the reconstructed chalk sample (Case 5). A subvolume of 1503 pixels has been
shown. The end caps of the pore spaces are shown in black.
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Fig. 10Chord distribution functions of the reconstructed sample (2563) in x-direction; (a) solid phase; (b) pore
phase. Empty circles represent target chord distribution, broken and solid lines represent chord distributions of
the GRF-generated (Case 4) and hybrid GRF/SA-generated (Case 5) media respectively.

5. Network modeling for petrophysical property estimation
5.1. Characterization of the reconstructed media
The stochastic reconstruction techniques applied in this study do not impose any connectivity
constraints. Therefore, the reconstructed media may contain clusters of isolated pore and solid
pixels. These isolated clusters contribute to the correlation functions and their removal by
filtering results in deviations from the target functions. This afflicts reconstructed media for
which φ<0.2 (8) and is not a matter of concern in the reconstruction of chalk. Nonetheless, the
cluster reconnection algorithm of Liang et al. (15) was implemented to establish the
connectivity of the void phase. The algorithm conserves porosity and causes negligible
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changes to the morphology of the solid-void interface and autocorrelation function. We found
0.3% isolated pore pixels in the medium reconstructed by the GRF technique (Case 4) and
0.1% in the medium reconstructed medium by the hybrid GRF/SA technique (Case 5).

The fully connected media were characterized using the pore space partitioning algorithms
developed by Liang et al. (17). The method is based on partitioning of pore space into nodal
pores by identifying local minima in the cross-sectional area of the pore space channels using
a skeleton link scanning procedure. The methodology takes advantage of a 3D, connectivity
preserving, fully parallel thinning algorithm developed by Ma and Sonka (21). The thinning
algorithm is used to extract the skeleton (medial axis) of the pore space. The skeleton serves
as the basis for characterization of the reconstructed media. The characterization provides the
distributions of pore volume Vp, throat area At, throat hydraulic radius RH and coordination
number, as well as the distributions of hydraulic and electrical conductance of distinct pore
space channels.

Assuming that the pores are cubic and that the throats have a square cross-section, the pore
volume and throat area distributions were converted to equivalent pore and throat sizes using
the following relationships,

3/1
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The pore-size, throat-size and coordination number distributions obtained from 3D
characterization of the reconstructed 2563 sample (Case 4) are shown in Figs. 11, 12 and 13
respectively. The pore and throat radii were calculated using Eq. 11 and 12 respectively. The
throat-size and coordination number distributions obtained from 3D characterization of
sample reconstructed in Case 5 are included in Figs. 12 and 13 respectively. The pore- and
throat-size distributions calculated from mercury intrusion and extrusion data are also
included in Figs. 11 and 12 respectively. As expected, the throat-size and coordination
number distribution of the reconstructed sample in Case 4 differs only slightly from those of
the reconstructed sample in Case 5.
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Fig. 11Pore size distributions from mercury porosimetry and from 3D characterization of the reconstructed
medium (Case 4).
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Fig. 12Throat size distributions from mercury porosimetry and from 3D characterization of the reconstructed
media (Case 4 and 5).
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Fig. 13Coordination number distributions of the reconstructed media (Case 4 and 5) obtained from 3D
characterization.

The range of pore and throat sizes found in the reconstructed chalk sample agrees very
well with the range of pore and throat sizes estimated from mercury porosimetry. This finding
further supports the conclusion that stochastic reconstruction has provided a faithful replica of
the chalk microstructure. As stated previously, there is no expectation that the distributions
shown in Fig. 11 and Fig. 12 should overlap in anything but the range of pore and throat sizes.

The mean throat and pore radii of the reconstructed medium (Case 4) obtained from 3D
characterization are 0.182 and 0.31 µm respectively. These values are somewhat lower than
those obtained from mercury porosimetry data (0.27 and 0.73 µm, respectively). The mean
throat radius of the reconstructed medium (Case 5) is 0.184. Samples reconstructed in Case 4
and 5 have slightly different coordination number distributions (see Fig. 13) and average
values of the distributions (4.8 for Case 4 while 5.1 for Case 5). The average coordination
numbers are much higher than that obtained by Bekri et al. (11) for similar chalk
(approximately 3.2). We believe that this discrepancy is due to limitations of the
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characterization methodology employed in the previous study. There are few pores having
coordination number as high as 28. The 3D characterization of the reconstructed chalk (Case
4) estimated 2264 pores and 7916 necks in a sample of 35x35x35 µm3.

5.2. Network model
In order to estimate petrophysical properties, an equivalent network model of chalk pore
structure was constructed based on bond-correlated site percolation concept detailed by
Ioannidis and Chatzis (20, 22). The network model is constructed from input on porosity,
average coordination number, pore- and throat-size distributions, specific surface area and
shape of pores and throats. Its distinguishing features are explained below.

The network model is an approximation of the irregular 3D microstructure shown in Fig. 9.
An irregular porous medium (see Fig. 14(a)) is represented by a network of cubes (pores)
occupying the sites of a regular cubic lattice. The cubic pores are interconnected through
volumeless throats of rectangular cross-section (see Fig. 14(b)). Prior to assignment of sizes to
the sites and bonds of the lattice, site percolation is used to remove sites and associated bonds
until the desired average coordination number is achieved. Next, pore sizes are randomly
assigned to the lattice size from the known pore volume distribution. In agreement with
detailed studies of the geometry of stochastically reconstructed porous media (23), a bias is
introduced on the assignment of pore sizes so that larger pores preferentially occupy sites of
greater coordination number. Assignment of throat sizes follows the bond-correlated site
percolation scheme, whereby larger throats are assigned to bonds connecting larger pores.
This introduces short-range spatial correlation of pore throat sizes and is also in agreement
with detailed studies of the geometry of stochastically reconstructed porous media (10). The
node-to-node distance, or lattice constant (lc), is adjusted to obtain the required porosity. Note
that the network model matches the average coordination number accurately, but not the
coordination number distribution.

VP

DH

lc

(b)

(c)

Fractals

VP

DH

Grain

(a)

Fig. 14Construction of a network model; (a) real porous medium; (b) equivalent network model; (c) fractal
decoration in order to match specific surface area.
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In the construction of the network model, it is realized that the shape of actual pores is in
fact irregular (see 23). Thus, although the measured pore volume distribution is precisely
matched in the network model, the model is actually smoother than the medium it is taken to
represent (i.e., the specific surface area of the network model is smaller). For the sample
under study the specific surface area of the equivalent network is 0.9 µm-1, by comparison to
1.3 µm-1 for the reconstructed medium and 4.75 µm-1 for the real sample (MIP result).
Realistic simulation of immiscible displacement using the network model requires at least an
approximate account of late pore filling. Several possibilities exist and the one considered
here is based on a fractal "decoration" of the pores. A fractal decoration (see Fig. 14(c)) is
assigned to the pore cross-section in order to match the model specific surface area (Sm) with
the one measured by mercury porosimetry (Sf). It is shown (24) that the number of levels of
fractal decoration (nf) required to match this specific surface area can be expressed by,
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Addition of fractal decoration increases the model pore volume. As a result, it is necessary to
adjust the equivalent pore radii (Eq. 11). The volume adjustment necessary may be calculated
using Eq. 15.
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where Vf is the volume of each pore after nf levels of fractal decoration.

5.3. Computation of petrophysical properties
Computation of absolute permeability and formation factor is based on an electric analogue-
linear network concept detailed by Ioannidis and Chatzis (20, 22). To simulate fluid or current
flow, one needs to compute the overall hydraulic or electric conductance of the network by
applying the principle of mass or electric current balance at all nodes. In our network model
the throats have no volume as they correspond to local minima in the hydraulic radius of
distinct, irregularly shaped pore space channels. The equivalent hydraulic or electrical
conductance of the each resistor in the network model is calculated from the following
equations:
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where le is an equivalent length estimated as
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nmnm ppce +−=

−
[19]

In these equations, f(ξ) is a function of the throat aspect ratio (ξ = 1 here) and 
mpR ,

npR  are
the sizes of adjacent pores.
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The mass (or electric current) balance requires that,

0=∑ ijq [21]

i.e., the algebraic sum of flows at all nodes in the network be zero. These equations together
with appropriate initial and boundary conditions constitute a set of linear equations, which can
be solved by a linear solver. We employed a preconditioned conjugate gradients method.

The pressure differential (∆P) (or voltage differential, ∆V) across the model can be
computed for a given volumetric flow rate (Q) (or electric current, I), enabling the calculation
of the absolute permeability (k) and formation factor (F) of the network. Absolute
permeability is calculated from familiar Darcy’s equation:

PA
QL

k
∆

µ
=

[22]
where L is the network length and A is the network cross-sectional area. The formation factor
is calculated in a similar manner.

To compute the resistivity index we simulate the process of drainage of the conductive
wetting phase by a non-conductive non-wetting phase using an invasion percolation
algorithm. Trapping of the wetting phase is not considered, for it is assumed that the wetting
phase maintains its continuity through the corners of the pores and therefore can be drained to
arbitrarily low levels by increasing the applied capillary pressure. At each stage of the
drainage process, we first determine the fluid occupancy of pore and throats. The effective
electrical conductivity of the pore network is computed by solving the equivalent resistor
network equations. The conductance of throats invaded by the non-wetting phase is computed
from the equation,

e

w
e l

A
g =

 [23]
where Aw is the cross-sectional area of the pore throat that is occupied by the wetting phase.
Details on the computation of the capillary pressure for invasion of the non-wetting phase into
throats of rectangular cross-section and on the computation of Aw as a function of capillary
pressure are given by Ioannidis and Chatzis (22).

It is emphasized that the network model is only an approximation of the pore space in
chalk. The quality of this approximation must be judged not by comparing the predicted
petrophysical properties with experimental data, but also by comparing them with predictions
obtained using the reconstructed microstructure itself. For this reason, we also compute the
permeability of the reconstructed chalk by solving the equivalent resistor network problem as
described in Liang et al (10) and the formation factor by random-walk simulation (8).

6. Network modeling results
6.1. Capillary pressure
The network was constructed based on the 3D characterization data for the reconstructed
chalk sample corresponding to Case 4. The mercury-air drainage capillary pressure computed
using the network model is compared to the experimental one in Fig. 15. The network model
predicts a breakthrough capillary pressure and radius of 24.5 bar and 0.29 µm respectively.
The agreement is remarkably good considering the approximate nature of the network model
and the fact that no adjustable parameters were used. The discrepancy in the range 30-100 bar
is most likely due to the fact that the fraction of the volume of each pore that is contributed by
fractal decoration (and therefore contributes to late filling) is small. Clearly, a more versatile
model of late pore filling is needed (25).
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Fig. 15Experimental and simulated mercury-air capillary pressure curves.

6.2. Absolute permeability and formation factor
Computations of absolute permeability and formation factor performed directly on the
reconstructed microstructure yielded the values 1.73 mD and 12.3 respectively. The computed
permeability is remarkably close to the experimental value (1.35 mD), supporting the
conclusion that stochastic reconstruction has rendered the microstructure of the real sample
with sufficient accuracy. The predicted formation factor is also in good agreement with
experimental values for similar North Sea chalk samples reported by Bekri et al (11). The
predictions of permeability and formation factor from the network model are 0.643 mD and
13.5, respectively, also in good agreement. The permeability and formation factor predicted
from simulation directly on the reconstructed microstructure should be considered more
reliable, because the convergent-divergent geometry and exact spatial arrangement of all flow
paths is taken into account. On the other hand, the network model considers flow paths as
channels of uniform cross-section and slightly underestimates the hydraulic and electrical
conductivity. However, the network model is computationally much more efficient and can
provide estimates of petrophysical properties such as the capillary pressure and resistivity
index curves, which are difficult to obtain directly from the simulated microstructure.

Finally, it is interesting to check whether the following formula, relating the values of k
and F in stochastically reconstructed media to image statistical properties (φ and s) (10), also
holds for the reconstructed chalk:

2

2

Fs226
64

k
φ

=
 [24]

Using φ = 0.309, s = 1.3 µm-1 and F = 12.3, we obtain k = 1.3 mD in excellent agreement with
the measured permeability.

6.3. Resistivity index
Resistivity index is a useful quantity which, when combined with a saturation model, enables
us to calculate fluid saturations in the system. Results in this study have been based on
Archie’s-saturation model. The basic equation relating wetting phase saturation (Sw) and
resistivity index (Ir) is as follows:
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where, Rt and Ro are the resistivity indices when the system is partially and fully saturated
with wetting fluid respectively, and n is the saturation exponent.

The network model described previously was used to calculate the resistivity index and
saturation exponent as function of wetting phase saturation. These results are shown in Fig.
16. No experimental data are available to compare with the simulated curves.

Conclusions
The combination of Gaussian random field (GRF) and simulated annealing (SA)
reconstruction techniques was studied for the first time. Hybrid GRF/SA reconstruction was
shown to lead to refinement of the simulated microstructure and considerable acceleration of
the convergence of the SA method. The method was used to reconstruct the microstructure of
a North Sea chalk sample. Subsequent morphological, geometric and topological
characterization showed that the resulting stochastic replica is a reasonably accurate model of
the microstructure of the real sample. This was further confirmed by computing the
permeability and formation factor of the simulated microstructure. A network model capable
of incorporating the essential geometric, topological and correlational aspects of stochastically
reconstructed porous media was constructed and used to estimate the petrophysical properties
of North Sea chalk. The predictions of permeability, formation factor and mercury-air
drainage capillary pressure curves were found to be in good agreement with experimental
data. This model was further applied to the prediction of resistivity index under conditions of
drainage.
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