

Automatic anisotropic migration velocity analysis for reverse-time migration

Wiktor Waldemar Weibull¹, Børge Arntsen¹, Marianne Houbiers² and Joachim Mispel² ¹ Norwegian University of Science and Technology ² Statoil ASA

SEG Annual Meeting, November 2012

Outline

Introduction

Anisotropic reverse-time migration

WEMVA

Numerical examples

Summary and remarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

Introduction

Anisotropic reverse-time migration

WEMVA

Numerical examples

Summary and remarks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction

- Reverse-time migration can handle strong and sharp contrasts in velocity and anisotropy
- Accurate estimate of seismic velocities is of key importance

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How to automatically obtain the velocities from surface seismic data using RTM based WEMVA

Outline

Introduction

Anisotropic reverse-time migration

WEMVA

Numerical examples

Summary and remarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Anisotropic reverse-time migration

$$R(x,h,z) = \sum_{s} \sum_{t} U(x+h,z,t,s)D(x-h,z,t,s)$$

[Rickett and Sava, 2002]

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Anisotropy

Density normalized anisotropic wave equation [Ikelle and Amundsen, 2005]

$$\frac{\partial^2 u_i}{\partial t^2}(\mathbf{x},t) - \frac{\partial}{\partial x_j} \left[v_{ijkl}(\mathbf{x}) \frac{\partial u_l}{\partial x_k}(\mathbf{x},t) \right] = F_i(\mathbf{x},t),$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

where v_{ijkl} is the density normalized elasticity tensor.

Assuming:

- VTI medium
- constant V_S
- $\blacktriangleright \ \delta(\mathbf{X}) = k\varepsilon(\mathbf{X})$

[Thomsen, 1986]

Anisotropy

Density normalized anisotropic wave equation [Ikelle and Amundsen, 2005]

$$\frac{\partial^2 u_i}{\partial t^2}(\mathbf{x},t) - \frac{\partial}{\partial x_j} \left[v_{ijkl}(\mathbf{x}) \frac{\partial u_l}{\partial x_k}(\mathbf{x},t) \right] = F_i(\mathbf{x},t),$$

where v_{ijkl} is the density normalized elasticity tensor.

Assuming:

- VTI medium
- constant V_S
- δ(x) = kε(x) [Thomsen, 1986]

Parameter space reduces to two!

$$V_{P0}(\mathbf{x})$$
 and $\delta(\mathbf{x}) = k\varepsilon(\mathbf{x})$

・ロト・日本・日本・日本・日本

Wavefield reconstruction

Scattered Wavefield

$$P(\mathbf{x},t) \approx V_{P0}^2(\mathbf{x}) \nabla \cdot \mathbf{u}(\mathbf{x},t).$$

Example of CIPs output by RTM

$$R(x,h,z) = \sum_{s} \sum_{t} U(x+h,z,t,s)D(x-h,z,t,s)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline

Introduction

Anisotropic reverse-time migration

WEMVA

Numerical examples

Summary and remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The error measure

(Objective function)

$$\mathcal{J} = \mathcal{DS} - \mathcal{SI}.$$

Differential semblance

[Shen and Symes, 2008, Weibull and Arntsen, 2011]

$$\mathcal{DS} = \frac{1}{2} \int dx \int dz \int dh h^2 \left[\frac{\partial R}{\partial z}(x, z, h) \right]^2$$

Similarity index

[Chavent and Jacewitz, 1995, Shen and Symes, 2008]

$$\mathcal{SI} = \frac{\gamma}{2} \int dx \int dz \left[\frac{\partial R}{\partial z} (x, z, h = 0) \right]^2$$

 γ = weight of \mathcal{SI} over \mathcal{DS}

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

WEMVA

Outline

Introduction

Anisotropic reverse-time migration

WEMVA

Numerical examples

Summary and remarks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Synthetic data example

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Synthetic model

Synthetic data

- Source spacing = 40 m
- Receiver spacing = 20 m
- Maximum offset = 5 km
- Maximum frequency = 30Hz

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Recording time = 4 s

Optimized velocities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Optimized velocities

~ ~ ~ ~

Anisotropy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Migration

Initial image

True image

SQC.

Subsurface angle gathers

Isotropic image

Anisotropic image

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

True image

Field data example

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Field data

2D line extracted from a 3D marine dataset

- Source spacing = 40 m
- Receiver spacing = 20 m
- Maximum offset = 5 km
- Maximum frequency = 30Hz
- Recording time = 4 s

Velocity model

Velocity model

Optimized ε 0.4 Depth (km) 0.3 0.2 3 0.1 0 5 10 x (km) 15 Optimized δ 0.25 Depth (km) ² ² ¹ 0.2 0.15 0.1 3 0.05 0 5 10 x (km) 15

<ロ> < @ > < E > < E > E の <</p>

Migration

(日)

э

Subsurface angle gathers

Optimized image

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Outline

Introduction

Anisotropic reverse-time migration

WEMVA

Numerical examples

Summary and remarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary and remarks

- WEMVA provides a fast and automatic way of improving the quality of the reverse-time migrated image
- In spite of the reduction of the model space to only two parameters, there is still a strong trade off between the parameters
- High computational cost is limiting the application of the velocity analysis to 2D and low frequency datasets

We acknowledge the partners in the Snorre license, Statoil ASA, Petoro, ExxonMobil E&P Norway, Idemitsu Petroleum Norge, RWE, Dea Norge, Total E&P Norge and Core Energi AS for permission to publish the results.

Bibliography

- Chavent, G., and C. A. Jacewitz, 1995, Determination of background velocities by multiple migration fitting: Geophysics, 60, 476–490.
- Ikelle, L. T., and L. Amundsen, 2005, Introduction to petroleum seismology: Society of exploration geophysicists.
- Rickett, J. E., and P. C. Sava, 2002, Offset and angle-domain common image-point gathers for shot-profile migration: Geophysics, 67, 883–889.
- Shen, P., and W. W. Symes, 2008, Automatic velocity analysis via shot profile migration: Geophysics, 73, 49–59.
- Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966.
- Weibull, W. W., and B. Arntsen, 2011, Reverse time migration velocity analysis: Presented at the 73th EAGE Conference & Exhibition, European Association of Geoscientists and Engineers.