
Automatic anisotropic migration velocity analysis for reverse-time migration
Wiktor Weibull∗, NTNU, Børge Arntsen, NTNU, Marianne Houbiers, Statoil ASAand Joachim Mispel, Statoil ASA

SUMMARY

The need for accurate seismic images over complex geolog-
ical settings has driven the development of modern prestack
depth migration algorithms, such as wave equation migra-
tion (WEM) and reverse-time migration (RTM). These algo-
rithms can cope not only with strong and sharp seismic ve-
locity variations, but also with the complication of anisotropy.
However, the imaging results still rely strongly on the qual-
ity of the velocity model estimation. In this paper we imple-
ment an automatic velocity analysis method based on focus-
ing of anisotropic RTM of surface seismic data. The proposed
method can deal with any form of anisotropy, but in this paper
we focus on a vertically transverse isotropic medium (VTI).
By assuming a fixed ratio between the anisotropic parameters,
the number of parameters to be estimated is reduced to two.
The method is tested on 2D synthetic and real field datasets. In
both cases the velocity analysis produce well focused images.
However, the results of the synthetic data example show that
the method is relatively insensitive to the anisotropic parame-
ters.

INTRODUCTION

Seismic imaging over complicated geological environments
demands sofisticated depth migration algorithms, capable of
accurately dealing with large lateral variations in velocity and
with anisotropy. Perhaps, equally important to the need for ac-
curate imaging methods is the need for better velocity esti-
mation methods. Ideally, the velocity analysis method and the
depth migration algorithm should be based on the same so-
lution to the wave equation. This ideal has motivated the de-
velopment of a series of velocity analysis methods, commonly
grouped under the name of wave equation migration veloc-
ity analysis (WEMVA) (Sava and Biondi, 2004). As the name
implies these techniques attempt to estimate seismic veloci-
ties through the focusing of depth migrated seismic data. The
approach is based on formulating an objective function that
measures to what extent subsurface offset- or angle-gathers are
focused or flattened respectively, and then minimizing the ob-
jective function with respect to the velocity field.

A major strength of WEMVA is that it can be made fully au-
tomatic, and uses all events present in the seismic image to
constrain the velocity model. Also by proper choice of the ob-
jective function, the method is less sensitive to the cycle skip-
ping problems common to waveform fitting methods such as
full waveform inversion (Tarantola, 1984; Symes and Caraz-
zone, 1991). This makes WEMVA a robust method that can be
applied in areas where the prior information is vague or non-
existent.

Most implementations of WEMVA are based on the acous-
tic isotropic approximation. One reason for this is that this

approximation usually produces a satisfactory result. Another
reason is that, under an acoustic isotropic medium, the velocity
field can be described by a single spatially varying parameter,
the P-wave velocity. Whereas for an anisotropic medium there
are at least three parameters that need to be estimated. How-
ever, in cases where the velocity field is anisotropic, velocity
analysis under an isotropic assumption will lead to an inaccu-
rate solution.

In this paper we investigate whether it is possible to use
WEMVA to estimate one additional anisotropic parameter
from surface seismic data. For this purpose we propose a
WEMVA method based on a combination of the similarity-
index (Chavent and Jacewitz, 1995), differential semblance
(Symes and Carazzone, 1991) and anisotropic RTM. We
choose to use RTM because this method provides an accurate
solution to the wave propagation problem, in particular at large
angles, which are crucial for anisotropic parameter estimation.

In the next section, we present the basic equations we used to
set up the optimization problem. Then we show the results of
both a 2D synthetic and real field data example, which confirm
the viability of the method.

THEORY

The theory for reverse time migration is founded on non-
linear inversion theory (Tarantola, 2005). Depth images are
produced by crosscorrelating a source wavefield forward prop-
agated in time with a residual wavefield backward extrapolated
in time. In the context of full waveform inversion, these im-
ages represent the gradients of the least square misfit func-
tion with respect to the material parameters. On the other
hand, if the residual wavefield is given by the single scatter-
ing recorded data, we obtain Claerbout’s imaging condition
(Claerbout, 1971). According to this condition, given an ac-
curate estimate of the material velocities, the crosscorrelation
of the reconstructed source and receiver wavefields will have a
maximum at zero lag in time and space. In Differential Sem-
blance optimization, this fact is explored to set up a non-linear
least squares inversion problem (Symes and Carazzone, 1991).
By parametrizing the image with an additional lag parameter
it is possible to capture the deviation of the maximum in cross-
correlation from zero lag (Rickett and Sava, 2002). The resul-
tant image volume can then be used to quantify the error in the
estimates of the velocities (Shen and Symes, 2008).

In this paper we use an RTM image (R) parametrized by hori-
zontal spatial lag (h) :

R(x,h) =
∑

s

∫ T

0
dt

∂uf w
i

∂xi
(x−h, t,s)

∂ubw
j

∂x j
(x+h, t,s),

where i, j = x,z are indexes under Einstein summation con-
vention,x = (x,z) are the spatial coordinates,h = (hx,0) is
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the subsurface horizontal half-offset,t is the time ands is the
source index.

The wavefieldsuf w
i andubw

i are the reconstructed source and
receiver displacement wavefields, respectively. These wave-
fields are computed by solving the following modeling equa-
tions:

uf w
i (x, t,s) =

∫

dx′ Gi j (x, t;x′,0)∗δ (x′−xs)
∂S
∂x′j

(x′, t,s)

ubw
i (x, t,s) =

∫

dx′ Gi j (x,0;x′, t)∗
Nr
∑

r=1

δ (x′−xr)
∂P
∂x′j

(x′,−t,s)

WhereGi j is the constant density elastic Green’s function,∗

denotes time convolution,S is the pressure source function,P
is the recorded pressure data, r is the receiver index, andδ is
the Kroenecker delta.

Anisotropy

To model the kinematics of wave propagation over an
anisotropic medium, we use a constant density elastic wave
equation. Different from other anisotropic wave equations,
such as the acoustic approximation of Alkhalifah (2000), our
implementation is stable under any form of physically real-
izable variation of material properties. The constant density
elastic wave equation can be written as (Ikelle and Amundsen,
2005):

∂ 2ui

∂ t2 (x, t)−
∂

∂x j

[

vi jkl (x)
∂ul

∂xk
(x, t)

]

= Fi(x, t)

whereui is the displacement vector,vi jkl is a velocity tensor,
andFi is a source term.

In a general anisotropic medium,vi jkl contains 21 independent
parameters. However, in this paper we only estimate 2 param-
eters. We assume a VTI medium with constant S-wave veloc-
ity and fixed ratio between the Thomsen’s parametersε and
δ (Thomsen, 1986). The coupling of the anisotropic parame-
ters is an attempt to increase the sensitivity to anisotropy and
reduce the number of parameters to be estimated. This way,
vi jkl can be fully described by the P-wave velocity along the
symmetry axis (VP0) and one anisotropic parameter (coupling
between Thomsen’sε andδ ).

Velocity analysis
The velocity analysis is based on non-linear optimization of
the following objective function:

J = DS−SI. (1)

The objective function is composed of two parts, the differen-
tial semblance misfit (DS) and the similarity-index (SI).

The differential semblance misfit quantifies the deviation of
the image from focus, and is given by (Weibull and Arntsen,
2011):

DS=
1
2

∥

∥

∥

∥

h
∂R
∂z

(x,h)

∥

∥

∥

∥

2

(2)

The similarity-index measures the stack quality of the image.
It is very nonlinear, but has a strong peak at the correct back-
ground velocities and helps to prevent the amplitude dimming
related to artifacts in the solution of the differential semblance
optimization (Shen and Symes, 2008):

SI=
γ
2

∥

∥

∥

∥

∂R
∂z

(x,h = 0)

∥

∥

∥

∥

2

(3)

whereγ is a constant which balances the weight of SI over DS.
Ideally, it should be set such that SI only acts as a regulariza-
tion.

The errors quantified by the objective function (J) can be turned
into velocity updates by a non-linear iterative optimization pro-
cess. In this process, it is necessary to compute the gradients
of the misfit function with respect to the velocity parameters.

The gradients can be computed in a similar fashion to the
depth migration described above, by the adjoint state method
(Chavent, 2009):

∇mJ(x) =
∑

s

∫

dt
∂vi jkl

∂m
(x)

∂uf w
l

∂xk
(x, t,s)

∂ψ f w
i

∂x j
(x, t,s)

+
∑

s

∫

dt
∂vi jkl

∂m
(x)

∂ubw
l

∂xk
(x, t,s)

∂ψbw
i

∂x j
(x, t,s)

wherem = [VP0(x),ε(x),δ (x) = kε(x)], andk is a constant
that couples Thomsens’sε andδ .

The wavefieldsψ f w
i and ψbw

i are adjoint states that can be
computed by the following adjoint modelings:

ψ f w
i (x, t,s) =

∫

dx′
∂Gi j

∂x′j
(x,0;x′, t)∗FD(x′, t,s),

and

ψbw
i (x, t,s) =

∫

dx′
∂Gi j

∂x′j
(x, t;x′,0)∗FU (x′, t,s).

HereFD andFU are residual sources given by:

FD(x′, t,s) =
∫

dh (h2
−δ (h)γ)

∂ 2R

∂z′2
(x′+h,h)

∂ubw
l

∂x′l
(x′+2h, t,s),

and

FU (x′, t,s) =
∫

dh (h2
−δ (h)γ)

∂ 2R

∂z′2
(x′−h,h)

∂uf w
l

∂x′l
(x′−2h, t,s).

RESULTS AND DISCUSSION

Synthetic data example
The synthetic velocity model used in the first example is shown
in figure 1. The model is a 2D synthetic cross section of the
Snorre field offshore Norway. The anisotropic model simu-
lates a medium with both elliptical (ε = δ ) and anelliptical
VTI layers. This model was used to generate synthetic seismic
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data using a finite difference solution to the elastic wave equa-
tion (Lisitsa and Vishnevskiy, 2010). The geometry of the data
consists of a line with minimum offset of 150 meters and max-
imum offset of 6 kilometers. Absorbing boundary conditions
were used to ensure that the data is free from surface related
multiples. However, interbeded multiples and converted waves
are still present in the data.
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Figure 1: Synthetic anisotropic model; Left:VP0 (top); Density
(bottom). Right: Epsilon (top); Delta (bottom).
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Figure 2: Left: InitialVP0 (top); UpdatedVP0 (bottom); Right:
Updated epsilon (top); Updated delta (bottom).

The starting point for the velocity analysis is an isotropic 1D
velocity model shown in figure 2. The model is constructed
from a smoothed trace of the true velocity model. As discussed
in the theory, we assume that the S-wave velocity is constant.
Thus for migration we arbitrarily choose the values of the S-
wave velocity to be 900m/s over the whole model. And we
couple the anisotropic parameters according to the fixed ratio
of ε = 3

2δ .

The result of optimization on the parameters after 30 iterations
are shown in figure 2. From this figure, we can see that the
updatedVP0 model is able to capture the main features of the
upper 2.5 km of the trueVP0 model, but fails to describe the
deeper rotated structures. It is important to note that what we

seek through the optimization are the background velocities,
i.e., the smooth part of the velocity field, which is necessary
to accurately explain the traveltimes. On the other hand, the
estimated anisotropic parameters show a strong inprint of the
P-wave velocity. This reveals a low sensitivity of the optimiza-
tion towards the anisotropic parameters. The sensitivity of the
anisotropic parameters could, in principle, be increased by a
judicious change in parametrization, by a change in the acqui-
sition geometry (longer surface offsets), or even by a different
scaling of the data. However, this requires a sensitivity analy-
sis, and is the subject of further research.

Figure 3 show a comparison of the RTM images produced
with the initial 1D, WEMVA, and true model parameters. The
initial image has large mispositionings and is poorly focused
due to the inaccurate initial background velocities. These is-
sues are largely fixed in the optimized migrated image, which
is well focused and compares favourably with the image mi-
grated with the true model. But there are some misposition-
ings (up to more than 50 meters) in the optimized image, in
particular below 3 km depth.
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Figure 3: Left: Initial image (top); Optimized image (bottom).
Right: True image.
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Figure 4: Angle gathers at position 8 km. Left: Initial 1D
isotropic model ; Middle: WEMVA model. Right: True model.

Figure 4 shows a comparison of angle gathers extracted from
the RTM images produced with the 1D initial isotropic model,
the WEMVA model, and the true model. The angle gathers are
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computed from the respective RTM image volumes using a
subsurface offset to angle mapping (Biondi and Symes, 2004).
The angle gathers provide a clearer way to quality control the
estimated parameters. From this figure we can see that, in spite
of the poor estimates of the anisotropic parameters, the opti-
mization does a good job in flattening the angle gathers.

Overall, these results suggest that optimizing the focusing of
subsurface offset CIGs produced by depth migration of sur-
face seismic data might not be sufficient to constrain a unique
anisotropic model. Due to this inherent non-uniqueness, the
solution of the optimization leads to a final image that is well
focused, but incorrectly positioned.

Field data example
In the next example we apply the method on a real dataset
taken over the Snorre field offshore Norway. The data is orig-
inally a 3D marine dataset, from which we extract a 2D line.
The geometry of the data consists of a line with minimum off-
set of 150 meters and maximum offset of 5 kilometers. The
data processing included multiple removal, and muting of di-
rect wave, wide-angle reflections and refractions. The maxi-
mum frequency of the data was filtered down to 30 Hz, so that
a coarse grid of 20 by 20 meters could be used for modeling
and migration.

The initial model for the optimization is shown in figure 5. It
consists in an isotropic 1D model created by smoothing a well
log of the vertical slowness.
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Figure 5: Left: InitialVP0 (top); UpdatedVP0 (bottom); Right:
Updated epsilon (top); Updated delta (bottom).

x (km)

D
ep

th
 (

km
)

5 10 15

0

1

2

3

4

x (km)

D
ep

th
 (

km
)

5 10 15

0

1

2

3

4

Figure 6: Left: Initial image. Right: Final image after 30 itera-
tions.

The optimization is set to run for 30 iterations. The resultant

estimated parameters are shown in figures 5. Notice that in this
case the estimated anisotropic parameters, albeit small (less
than 0.04 forε and less than 0.03 forδ ), are relatively inde-
pendent fromVP0.

The migrated images computed with the initial and updated
models are shown in figure 6, while figure 7 shows a compar-
ison on selected angle gathers. We can see that optimization
clearly improves the focusing of the RTM image and flattens
the angle gathers. However, as in the synthetic data example,
there is some uncertainty about the positioning of the reflectors
in the final image.
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Figure 7: Angle gathers at position 8 km. Left: Initial 1D
isotropic model ; Right: WEMVA model.

CONCLUSION

Results on synthetic and real field data show that our method
provides an automatic and fast way of improving the quality of
the depth migrated image.

In spite of the reduction of the model space to only two param-
eters, the optimization was dominated strongly by the P-wave
velocity along the symmetry axis (VP0). This reflects the low
sensitivity of this type of optimization towards anisotropy. As
a result, images are mispositioned in depth. Further research is
necessary to make the method more sensitive to anisotropy, al-
lowing more information to be extracted from surface seismic
data.

The high computational cost is currently limiting the applica-
tion of the method to 2D and low frequency datasets. Results
could be further improved by adding more frequencies and the
whole 3D dataset.
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