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SUMMARY

Wave equation migration velocity analysis is an automatic it-
erative method for estimating seismic velocities from migrated
images. The problem of obtaining velocity updates from im-
ages is currently solved by first expressing the object function
perturbation as a linear function of the the model perturba-
tions. And then solving the linear system using adjoint meth-
ods. Here we carefully analyse the errors associated with the
linearization in the velocity analysis framework. The goal is to
be able to quatify approximately what are the necessary con-
ditions for a sucessful velocity inversion.

INTRODUCTION

The problem of estimating wave velocities for depth migra-
tion has traditionally been solved by seismic tomography us-
ing ray approximations. However, ray approximations have
several shortcomings and often fail to be adequatelly accurate
in areas with large and sharp velocity contrasts. To overcome
this problem the velocity analysis method must include the
whole wavefield. One such method is the wave equation mi-
gration velocity analysis (WEMVA). In recent years we have
seen many successsful applications of WEMVA for imaging in
areas of complex geological settings, such as subsalt (Sava and
Biondi, 2004b) and through gas chimneys (Shen and Symes,
2008). In these applications WEMVA has shown to be supe-
rior when compared to ray tomographic methods.

Practical implementation of WEMVA is currently based on the
Born approximation (Sava and Biondi, 2004a; Gao and Symes,
2009). Which means that successful implementation of the
method must cope with the limitations imposed by this lin-
earization. Despite this being a well known problem, it has
not been systematicaly analysed in the framework of WEMVA.
Here we present a quantitative analysis of the error associated
with the Born approximation with respect to all parameters in-
volved. This allows us to pinpoint what are the minimum nec-
essary conditions for the velocity analysis to converge. We
illustrate the implications of the non-compliance with these
conditions with simple examples.

THEORY

First we develop the theory to the linearization of the objective
function with respect to the model perturbations. Next we de-
termine the error associated with the linearizations. We do this
in the simple case of a constant background velocity medium,
where the wave equation can be solved exactly. For notational
purposes, the theory is developed for 2 dimensions (xm,z), but
it can easily be extended to 3D.

WEMVA is in essence an optimization procedure where the

misfit to be minimized is a function of the migrated image.
Minimization is sought through penalizing certain qualities of
the image that are indicators of incorrect velocity, such as smear-
ing of common image point gathers (Shen and Symes, 2008)
or dip in angle domain common image point gathers (Sava and
Biondi, 2004a). The following objective function illustrates
how this can be defined:

M(s) =
1
2

∑
z

∑
x

∑
h

||PR(xm,h,z)||2 (1)

Where R(xm,h,z) is the image volume, xm are the subsurface
midpoint coordinates, h can be either the subsurface offset or
angle, and P is an operator which can be either a scaling by
offset (h) or a derivation across angles ( ∂

∂θ
).

The slowness can be written as s = s0 + ∆s, where s0 is the
background slowness and ∆s is an unknown slowness pertur-
bation to be estimated. Equation 1 can be minimized through
an iterative method, such as the Newton Rapson (Nocedal and
Wright, 2000):

∆sk+1 = [JT J]−1
∇sM(s0k )≈ α∇sM(s0k ) (2)

Where k is the iteration index, alpha is the step size (diagonal
approximation to the Hessian matrix), ∇sM(s) = JT PR, and
J = ∂

∂ s (PR) is the Jacobian matrix.

We now analyse the error associated with the linear relation in
equation 2 (Born approximation) by direct comparison with
the exact solution to the wave equation in a constant back-
ground medium. The solution to the one way wave equation in
a constant medium is given by Ursin (1984):

U(kx,ω,z) = exp [−ikz(z− z0)]U(kx,ω,z0) (3)

Where

kz(kx,ω,s) =
√

(ωs)2− k2
x (4)

The variable kx stand for the horizontal wavenumber in xm di-
rection. While ω is the angular frequency and s is the phase
slowness (1/v). For simplicity, from now on we omit depen-
dence on kx and ω .

Using equation 3 we can extrapolate a wavefield over a depth
interval (∆z) using two slownesses (s0 and s0 +∆s). If we then
subtract the resultant wavefields from one another, we end up
with a wavefield perturbation due to a velocity perturbation
(∆s) over a depth interval (∆z). In mathematical terms this is
given by:

∆Uz+∆z(∆s) = Uz+∆z(s0 +∆s)−Uz+∆z(s0) =

=
(

e−ikz∆z− e−ikz0 ∆z)U(z) (5)

Where kz0 and kz are the vertical wavenumbers computed with
s0 and s0 +∆s, respectively.
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The linear relation between wavefield perturbation and slow-
ness perturbation under the born approximation reads (Sava
and Biondi, 2004a):

∆Uz+∆z(∆s) ≈ −i∆z
dkz

ds

∣∣∣∣
s0

U(z)∆s

≈ −i∆z
ω2s0

kz0

e−ikz0∆zU(z)∆s (6)

The linearization space

Equation 6 is only valid for certain values of the variables kx,
ω , ∆z and ∆s, which makes it justifiable to truncate the Taylor
series to the first order. In this section we are going to access
under which circumstances can we use (6) to obtain a slowness
perturbation given a wavefield perturbation.

We can compute the difference between the exact wavefield
perturbation (5) and the linearized wavefield perturbation (6):

E =

∣∣∣∣1− e−i(kz0−kz)∆z + i∆z∆s
ω2s0

kz0

ei(kz0−kz)∆z

∣∣∣∣ (7)

We can call this the linearization error. This error is varying
with the background velocity and velocity perturbation, but
also with the frequency and wavenumber parameters. The er-
ror is divided by U(z), to make it independent of the wavefield.
The error is also normalized by e−ikz∆z, resuling in a relative
error.

A better parametrization can be achieved if we use β = ωs0∆z,
ρ = ∆s

s0
and the planewave takeoff angle in the background

medium (θ0), where θ0 = arcsin
∣∣ kx

ωs0

∣∣:
E(β ,ρ,θ0) =

∣∣∣1− e−iβ (cosθ0−
√

(1+ρ)2−sin2
θ0

+i
βρ

cosθ0
e−iβ (cosθ0−

√
(1+ρ)2−sin2

θ0

∣∣∣∣ (8)

In this equation we take the slowness perturbation to be the ab-
solute value of the perturbation, since a slowness perturbation
can be either positive or negative.

Contour plots of the error in equation (8) for some values of
parameters β , ρ and θ are shown in figure 1. From this figure,
we can see that the error related to the linearization increases
with increasing ρ , β and θ . For a fixed background slow-
ness, this means that the error increases with the magnitude
of the slowness perturbation, with the frequency and with the
planewave takeoff angle. The error increase with these param-
eters occurs at an increasing rate until it finds inflection points.
These inflection points indicate that the exact wavefield per-
turbation and the linearized wavefield perturbation are moving
out of phase (cycle skipping).

Note that WEMVA is an iterative procedure, therefore large
errors can be expected in the first iterations, which does not
mean that the method will fail to converge. However cycle
skipping represents a likelly failure of the inversion as it may
cause the gradient of the objective function with respect to the
slowness to point in the oposite direction of the minimum.
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Figure 1: Contour plot of the linearization error (8) as a func-
tion of parametes ρ , β and θ .
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Examples
To illustrate how this error analysis can be linked to the be-
haviour of WEMVA, we first show some simple examples in
the framework of zero offset wave equation migration (Ursin,
1984). Next we show how error can affect convergence of
WEMVA in a more practical example, where we are trying
to minimize an objective function based on Differential Sem-
blance Optimization (Symes and Carazzone, 1991; Shen and
Symes, 2008).

In the first example we migrate a zero offset section repre-
sented by a broadband flat reflection at 1.6s. The migration
is carried out with split-step fourier migration (Stoffa et al.,
1990) under two different velocities, the correct velocity and
a perturbed velocity. The two images are subtracted to obtain
an image perturbation. We then use the adjoint state method
(Plessix, 2006; Shen and Symes, 2008; Virieux and Operto,
2009) to produce a gradient of the image perturbation with re-
spect to the slowness. In this process the adjoint of equation 6
is used. The maximum frequency content of the seismic data
is 120 Hz, the background velocity is 1000 m/s, which corre-
sponds to 500 m/s under the exploding reflector model (Ursin,
1984). The vertical extent is 5 m and the velocity perturba-
tion is 450 m/s. This corresponds to values of β and ρ of 3.7
and 0.8, repectivelly. This values translate to an error of 360
% at θ = 0, and as expected the gradient is completely wrong
(fig. 2b-d). By comparison we show the result of a gradient
computation with a maximum frequency of 30 Hz (fig. 2e-g).
This gives a β value of .9 and albeit an error of 30 % at θ = 0,
the gradient is well behaved.

In the second example we migrate 200 synthetic common shot
gathers taken over a model with flat reflectors and constant
background velocity of 2000 m/s. Migration is again carried
out with split-step fourier migration, using two slowness per-
turbations of different magnitudes, but located as in figure 3a.
One perturbation has a magnitude of 80 m/s giving a β value
of 19.6 and a ρ value of 0.04, which translates to a lineariza-
tion error of 32 %. The other perturbation has magnitude of
420 m/s (ρ = 0.26) which gives an error of more than 600 %.
For each case, we apply the offset imaging condition of Rickett
and Sava (2002) to obtain an image volume (R(xm,h,z)). And
we compute the gradient of objective function (1) using the ad-
joint state method, as defined in Shen and Symes (2008). The
result is shown in figure 3c-d. If the slowness perturbations
were both compliant with the Born approximation, then both
gradients would show similar behaviour. That is not the case,
since we can clearly see that the gradient computed with the
larger perturbation (fig. 3d) has oposite sign to the one com-
puted with the smaller perturbation. This occurs despite the
fact that the largest perturbation lies within the convex part
of the objective function which contains the global minimum
(fig. 3b).

DISCUSSION AND CONCLUSION

Equation 6, on which our error analysis is based, is valid for a
constant background medium with lateraly homogeneous ve-
locity perturbations. Several generalizations of this equation

for laterally heterogeneous background medium and slowness
perturbations exist. However all of these generalizations are
based on approximations to the vertical wavenumber (kz) and
therefore we can expect that through averaging the background
velocities and slowness perturbations our error analysis can be
approximatelly applied also for heterogeneous mediums.

For examples 1 and 2 we used split-step fourier migration to
be able to migrate data using velocity models with lateral slow-
ness variations. Although this clearly breaks with the assump-
tions in our error analysis (slowness perturbations without lat-
eral variations), it can be accomodated by using a mixed do-
main approach, as explained in Sava and Biondi (2004a). The
experimental results show that the error analysis holds under
these conditions. Note that background slowness is kept con-
stant in all examples.

Our error analysis shows that success of WEMVA depends
largelly on frequency content of the seismic signal, since the
background slowness, slowness perturbations magnitude and
extent are not known in beforehand. Another possibility to
control the convergence of WEMVA would be to break down
the model in depths steps and run WEMVA stepping down
from top to bottom (shallow to deep areas). This way we can
control the maximum extent of the perturbations, and avoid
large errors in the deeper parts of the model.
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Figure 2: This figure shows a very simple example of the application of the linearization error to anticipate the behaviour of the
first iteration of the WEMVA. a) Original slowness perturbation; b) Gradient with respect to the slowness of the image perturbation
using 120 Hz maximum frequency; c) Vertical profile; d) longitudinal profile; e) Same as b) but now using a 30 Hz wavelet; f)
vertical profile; g) longitudinal profile; Profiles are crossing the punctual slowness perturbation.
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Figure 3: This figure shows a more practical example of the application of the linearization error to anticipate the behaviour of
the first iteration of the WEMVA. a) Original slowness perturbation; b) Objective function (1) computed for various values of the
slowness perturbation in a). c) Gradient computed with -80 m/s velocity pertubation; d) Gradient computed with -420 m/s velocity
pertubation; Profiles accompanying the gradients are crossing in the middle of the slowness perturbation x= 2140 m and z= 620 m.
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