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SUMMARY

As a result of the increase in the computational power the re-
cent years, we are now able to use the full waveform inversion
(FWI) method in a full three dimensional isotropic elastic set-
ting. We use a 3D implementation of the FWI method on time-
lapse seismic multi-component data. We investigate two data-
difference based approaches for estimating time-lapse effects
directly in the P- and S-wave parameter models. In addition,
we investigate how the inversion of the two parameter models
should be performed, to reduce the total cost of the method.
We find that both approaches are able to detect and estimate
the time-lapse effects in the models. The inversion of the P-
and S-wave velocity models in the monitor inversion may be
performed simultaneously, as long as the baseline models are
close to the true solution.

INTRODUCTION

A common assumption in wave propagation problems is that
the subsurface is approximately an acoustic medium. Under
these assumptions it is sufficient to use the acoustic wave equa-
tion (Aki and Richards, 2002) to model waves propagating
through the medium. As a result of the increase in compu-
tational power the recent years, we now can leave the acoustic
assumption behind, and instead use the elastic wave equations
to model wave propagation in a medium. Moreover, it is pos-
sible to do this in a full three dimensional setup, within accept-
able computing times.

The full waveform inversion (FWI) method is a technique for
estimating parameters affecting wave propagation, and has been
applied with success on both synthetic and real datasets (Virieux
and Operto, 2009). The number of unknowns in the inverse
problem, and thus the size of the parameter models, have in-
creased. It is now possible to perform FWI in a full three di-
mensional setting.

Time-lapse seismic data contains information about changes
in the subsurface, and has proven to be an effective tool in
reservoir imaging and for monitoring of injected CO2 in the
subsurface (Biondi et al., 1996; Lumley et al., 2003). Two-
dimensional implementations of FWI has been applied on time-
lapse data with success (Zheng et al., 2011; Routh et al., 2012;
Zhang et al., 2013; Raknes and Arntsen, 2014).

There have not been many attempts (as far as we know) on ap-
plying FWI on synthetic or real datasets using a full three di-
mensional implementation of the method. Warner et al. (2013)
applied a full 3D anistropic acoustic implementation of FWI
on a 4C ocean-bottom survey over a field in the North Sea.
Butzer et al. (2013) applied 3D isotropic elastic FWI on a
small-scale cross-well acquisition geometry using both syn-
thetic and real datasets. Using FWI on time-lapse seismic data
in a 3D setting is still under research.

In time-lapse full waveform inversion (TLFWI) at least two
inversions must be performed. The computational cost of per-
forming 3D elastic FWI is high, and therefore the number of
iterations performed in the inversion should be held at a min-
imum, particularly when working with time-lapse data. The
monitor inversion should use as much information as possible
from the baseline inversion, and focus only on the differences
in the datasets. Inverting for more than one elastic parameter
is complicated, and in terms of computational cost, a natural
question is how this should be done to reduce the total number
of iterations in TLFWI.

The time-lapse images are obtained by subtracting the inverted
parameter models from each of the datasets. Since FWI is ill-
posed and nonlinear, and thus may get stuck in a local mini-
mum, the method may introduce artifacts in the time-lapse im-
age which may distort the interpretation. We like to call such
noise in the images for time-lapse artifacts. It is important to
find inversion schemes that tend to reduce the artifacts.

In this study, we investigate two different data-difference based
approaches for performing 3D isotropic elastic TLFWI using
synthetic ocean-bottom multi-component seismic data, where
we estimate the P- and S-wave velocity models (denoted as
Vp and Vs, respectively, in the following). In addition, we in-
vestigate different ways of performing the inversion to keep
the total number of iterations at a minimum. To test our ap-
proaches we use two synthetic models. We find that we are
able to detect and estimate time-lapse anomalies in the Vp and
Vs models using both inversion approaches. In terms of com-
putational cost, we find that the Vp and Vs models may be in-
verted simultaneously using the monitor dataset, as long as the
inverted baseline models are sufficiently close to the solution.

TIME-LAPSE FULL WAVEFORM INVERSION

The theory that underlies FWI has been derived several times
using different formulations, and we refer to Pratt (1999), Ficht-
ner et al. (2006) and Virieux and Operto (2009) for a more
detailed introduction to FWI than we have included here.

Full waveform inversion
The overall goal for FWI is to find a parameter model m which
produce modeled data u which is close to some measured data
d. The foundation for the method is the assumption that syn-
thetic data u can be generated using a numerical wave equa-
tion. Let L be the numerical wave operator which maps m
from the model domain into the data domain. Then the syn-
thetic data can be generated as follows

L (m) = u. (1)

If the inverse operator of L , that is, the mapping from the data
domain into the model domain, exists, then the solution to the
problem is simply given as

m = L −1(d), (2)
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where L −1 is the inverse operator. In practice, however, it is
not possible to find an explicit solver for the inverse operator.
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Figure 1: Vertical slice for example 1: (a) true Vp; (b) true Vs;
(c) initial model Vp; (d) initial model VS; (e) inverted baseline
Vp; (f) inverted baseline Vs.

The standard way for solving the inverse problem, is to define a
measure, denoted as Ψ(m), between u and d. This measure is
often called for the objective (or misfit) functional. We require
that the solution of the problem, that is, the point where u and
d are equal, is an extreme point for Ψ(m). Hence, the solution
to the problem can simply be expressed as

m′ = argmin
m

Ψ(m), (3)

where m′ is the model we are searching for. The inverse prob-
lem in equation 3 is non-linear and ill-posed.

The search for the extreme points of Ψ(m) is done using an
iterative optimization algorithm, written as

mk+1 = mk−αkH−1
k gk, (4)

where αk > 0 is the step length, H−1
k is the inverse Hessian

matrix, and gk is the gradient of Ψ(m) with respect to m at step
k. To start the algorithm an initial model m0 is required, and
the algorithm is run to some convergence criteria is fulfilled.

The crucial step in FWI is the computation of the gradient in
equation 4. Using the adjoint state method (Tarantola, 1984;
Mora, 1987) the gradients are efficiently calculated using equa-
tion 1.

In practice, the inverse Hessian matrix in equation 4 is compli-
cated to compute, because it involves second-order derivates
of the objective function. To overcome this problem, we use

the L-BFGS algorithm (Nocedal and Wright, 2006) which is a
quasi-Newton method that tries to estimate the inverse Hessian
matrix using the gradients from previous iterations.

Time-lapse full waveform inversion
In time-lapse full waveform inversion (TLFWI) at least two
inversions must be performed, and the time-lapse images are
obtained by subtracting the inverted parameter models from
the inversions.
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Figure 2: Horizontal slice at z = 500m for example 2: (a) true
Vp; (b) true Vs; (c) initial Vp; (d) initial Vs; (e) inverted baseline
Vp; (f) inverted baseline Vs.

We assume that we have two datasets dbase and dmon, where
dbase and dmon are the datasets from the baseline and monitor
surveys, respectively. The datasets are assumed to have been
aqcuired using identical source-receiver geometries and source
function. Hence, we have perfect repeatability between the
datasets.

The baseline inversion is common in both schemes and is per-
formed using the standard least-squares functional

Ψ(m) =
1
2

∑
(s,r)∈S

‖u(m;xr,xs)−d(xr,xs)‖2, (5)
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Figure 3: Time-lapse inversion results for example 1 (top: vertical slices at y = 1000m, bottom: horizontal slices at z = 600m): (a)
and (f): Vp using app. 1; (b) and (g) Vp using app. 2; (c) and (h): Vs using app. 1; (d) and (i): Vs using app. 2; (e) and (j): true
time-lapse effects (the magnitude for the Vp anomaly is -200 m/s and Vs is -150 m/s).

where S is the discrete set of all receiver and source enumer-
ations, xr and xs are spatial location vectors of the receiver
and source, u(m;xr,xs) is the modeled data at receiver r from
source s, and d(xr,xs) is the measured data at the same posi-
tion. The baseline inversion is run to convergence and a final
model mb is obtained.

In approach 1, the true monitor dataset is modified as follows
before the inversion (Zheng et al., 2011)

d̂mon = ubase +(dmon−dbase), (6)

where ubase is the inverted baseline dataset. The monitor in-
version is run using

Ψ(m) =
1
2

∑
(s,r)∈S

‖u(m;xr,xs)− d̂(xr,xs)‖2 (7)

as the misfit functional. In approach 2, we use the following
misfit functional

Ψ(m) =
1
2

∑
(s,r)∈S

‖∆d(xr,xs)−∆u(m;xr,xs)‖2, (8)

where ∆d = dmon−dbase and ∆u = umon−ubase.

There is a slightly difference between the two approaches. At
the first iteration in approach 1, the value of the misfit is only
the data difference. At the later iterations the inverted monitor
data will be taken into account. In approach 2, on the other
hand, the objective functional are completely driven by the
differences of the differences. In that sense, this is a double-
difference type of functional.

RESULTS

We assume that the subsurface is an elastic isotropic medium,
so that the L in equation 1 is the elastic wave operator (Aki
and Richards, 2002). We test the two time-lapse approaches
on two models. In example 1 we use a simple five layered

model, where we have introduced an half sphere in one of
the layers (Figure 1). The half sphere acts as the time-lapse
anomaly. In example 2 we use a model which is adapted from
the SEG/EAGE Overthrust model, where we use a channel
system at approximately 500m depth as the time-lapse anomaly
(Figure 2). The grid sampling is 25m on the three axes in the
examples. To avoid numerical aliasing we use a Ricker wavelet
with center frequency 6Hz as the source signature. We put the
density to the constant value of 1000 m/kg3 in all our exam-
ples, and invert for Vp and Vs.

In example 1 we use an ideal receiver geometry, where we put
receivers on a dense square grid (in total 4900 receivers) on the
sea floor. We perform 324 shots with 100 m shot sampling in
both directions. The source depth is 25 m. The initial model is
a smooth version of the true model without the dome included.
The baseline inversion results are given in Figure 1, while the
time-lapse images are given in Figure 3.

In example 2 we use a more realistic OBC setup, using 16
cables with length 4km. The distance between each cable is
250 m. The total number of receivers are 2560. We perform
441 shots on a square grid, with shot sampling of 125m in both
directions. The source depth is 25 m. The baseline inversion
results are given in Figure 2, while the time-lapse images are
given in Figure 4.

In terms of computational cost, we find that for example 1 we
are able to invert for the Vp and Vs models simultaneously,
both for the baseline and monitor datasets. There were no sig-
nificant differences in the models obtain by inverting for the
parameters on an one-by-one basis. For example 2, on the
other hand, we find that that doing sequentially based inver-
sion, where we first invert for Vp, then for Vs, and at last for
both Vp and Vs, give the best results for the baseline dataset.
For the monitor inversion, we find that it is sufficient to invert
for Vp and Vs simultaneously in both examples. There were
no significant differences between the results obtained using a
sequentially based inversion scheme, and the simultaneously
scheme for the monitor cases. Hence, we only needed to run
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one inversion for the monitor case.
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Figure 4: Time-lapse inversion results for for example 2. Hor-
izontal slices at z = 500m: (a) Vp using app. 1; (b) Vp using
app. 2; (c) Vs using app. 1; (d) Vs using app. 2; (e) true time-
lapse effect (the magnitude for the Vp anomaly is -200 m/s and
Vs is -150 m/s).

DISCUSSION

Our examples demonstrate that it is possible to use a full three-
dimensional implementation of FWI to invert for Vp and Vs
using multi-component ocean-bottom data. In both our exam-
ples, the baseline inversion was able to get final inverted mod-
els within the accepted resolution. In our trial runs of the base-
line inversion, we tried different starting models. The strong
surface waves, particularly the Scholte waves, were compli-
cated to estimate using FWI. Therefore, the initial model had
to be close to the true model in the parts close to the sea floor.

Both approaches were able to reveal time-lapse anomalies in
the Vp and Vs models. In example 1 we observe that the top
of the anomalies are detected, but the areas in the curved part
of the dome are somewhat lost (Figure 3). This can be ex-
plained by the relative short offset of the receivers, and the

shape of the anomaly. For example 2 (Figure 4), we observe
that both approaches are able to detect the time-lapse anomaly
in the channel system. If we compare the time-lapse images
obtained with the two approaches, we observe that they are
close to be equal. The difference that is possible to observe,
is the amplitude of the time-lapse anomalies; the trend is that
the images created with approach 1 have a amplitude slightly
closer to the true amplitude, compared to the images obtained
using approach 2. The time-lapse artifacts are small using both
approaches.

We tried different ways of performing both the baseline and
monitor inversion for Vp and Vs. It is interesting that a simulta-
neously approach where one invert for Vp and Vs was success-
ful for the baseline dataset in example 1 and not in example
2. This may be explained by the fact that the model in ex-
ample 1 is fairly simple, compared to the model in example
2, in combination with the distance of the initial model from
the true model. For the monitor inversion, the simultaneously
approach was successful in both examples. Thus, the inverted
models for the baseline case was so good, that the inversions
did not get stuck in a local minimum far away from the solu-
tion. Hence, having a good estimate of the baseline models,
may reduce the overall runtime of TLFWI.

It is worth mentioning that the two time-lapse approaches pre-
sented here have strong requirements on the acqusition geom-
etry of the datasets. To consider the data differences, one need
to require that the receivers are put on the same positions in
space in the baseline and monitor surveys. In a permanent
OBC setup this is easy, while using conventional streamer ge-
ometries it is more tricky. Therefore, the data difference based
inversion schemes may not be used in cases where the time-
lapse datasets are not acquired using the same source-receiver
geometries.

CONCLUSION

We have investigated two data difference based approaches for
estimating time-lapse anomalies in the Vp and Vs models us-
ing OBC datasets and a 3D isotropic elastic implementation
of FWI. We find that both approaches are able to detect the
time-lapse anomalies for both parameter models. We have, in
addition, investigated computational cost of TLFWI. We find
that as long as the baseline models are sufficiently close, the
Vp and VS models may be inverted for simultaneously in the
monitor inversion.
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