Examples 0000 000 0000 Conclusions

Acknowledgments

Time-lapse full waveform inversion: Synthetic and real data examples

Espen Birger Raknes*, Wiktor Weibull, and Børge Arntsen

Norwegian University of Science and Technology (NTNU) Department of Petroleum Engineering & Applied Geophysics E-mail: espen.raknes@ntnu.no

> SEG Annual Meeting 2013 September 24th 2013

NTNU – Trondheim Norwegian University of Science and Technology

Examples 0000 000 Conclusions

Acknowledgments

Time-lapse Image

Example 0000 000 Conclusions

Acknowledgments

Background

- During the last decade full waveform inversion has proven to be a promising method for parameter model estimation
- Increase in computational power leads to an increase in problem size
- We are now able to do inversion using elastic theory
- In a time-lapse setting, full waveform inversion yields results in the model domain, compared to conventional methods that yield results in the time domain
- Different approaches for performing time-lapse FWI exist in the literature

Example 0000 000 0000 Conclusions

Acknowledgments

Objectives

- Apply elastic full waveform inversion on time-lapse data
- Investigate behavior of full waveform inversion in a time-lapse setting using different streamer geometries
- Investigate different time-lapse approaches using full waveform inversion
- Apply the approaches on both synthetic and real datasets

Examples 0000 000 0000 Conclusions

Acknowledgments

Outline

Methodology Time-lapse full waveform inversion

Examples

Synthetic examples Real example 3D synthetic example

Conclusions

Acknowledgments

Conclusions

Acknowledgments

A Quick Overview of Full Waveform Inversion

Overall Goal

Find an Earth model from which it is possible to create synthetic data that is close to some measured data

Define $S(\mathbf{m})$ as the measure between synthetic and measured data. FWI is then the problem

 $\underset{\mathbf{m}}{\arg\min} S(\mathbf{m})$

Solved using an iterative method

 $\mathbf{m}_{k+1} = \mathbf{m}_k - \alpha_k \mathbf{g}_k,$

- \mathbf{m}_k model at iteration k
- \mathbf{g}_k gradient of $S(\mathbf{m})$ at iteration k
- α_k step length at iteration k

 $\substack{ \mathrm{Methodology} \\ \mathrm{00000} }$

Examples 0000 000 0000

Conclusions

Acknowledgments

Time-lapse FWI: Approach 1

Examples 0000 000 0000

Conclusions

Acknowledgments

Time-lapse FWI: Approach 2

Methodology 0000● Examples 0000 000 0000 Conclusions

Acknowledgments

Time-lapse FWI: Approach 3

Ref: [Zheng et al., 2011]

Conclusions

Synthetic examples

- Two test cases:
 - Deep model with 6 km streamer length
 - Shallow model with 1.2 km streamer length
- Reservoir acts as time-lapse anomaly
- Identical surveys acquired for baseline and monitor models

Examples 0000 0000 0000 Conclusions

Acknowledgments

Workflow for synthetic examples

- Using WEMVA for creating initial models for FWI [Weibull et al., 2012]
- Elastic modeling and inversion
- Inverting for P-wave velocities, no updates for S-wave velocities and density

Examples 0000 000 0000

Conclusions

Acknowledgments

Time-lapse images: long streamer

Examples 000 000 000

Conclusions

Acknowledgments

Time-lapse images: short streamer

Examples 0000 0000 Conclusions

Acknowledgments

Real example

- Time-lapse data from the Norwegian North Sea
- Base dataset acquired in 1988 and monitor dataset in 1990
- Between the dataset the field was exposed to a subsurface gas leakage in one of the producing wells
- Marine streamer survey: 230 shots and 1253 m streamer length
- Streamer: 95 receivers separated by 12.5 m

Ref: [Landrø,2011]

Examples 0000 0000 0000 Conclusions

Acknowledgments

Real example

- Time-lapse data from the Norwegian North Sea
- Base dataset acquired in 1988 and monitor dataset in 1990
- Between the dataset the field was exposed to a subsurface gas leakage in one of the producing wells
- Marine streamer survey: 230 shots and 1253 m streamer length
- Streamer: 95 receivers separated by 12.5 m

Ref: [Landrø,2011]

Examples 0000 000 0000 Conclusions

Acknowledgments

Workflow for real example

- Data is regularized into a identical grid using linear interpolation
- Bandpass filter (2-20 Hz) is applied
- Grid cells with grid spacing 6.25 m is used
- Initial model estimated using WEMVA
- Source is estimated using FWI keeping parameter models constant
- Inverting for P-wave velocities, linking S-wave velocities and densities using empirical relations

Examples 00000000000

Conclusions

Acknowledgments

Time-lapse images: Real example

Examples

Conclusions

Acknowledgments

Time-lapse images: Real example

Examples 00000000000

Conclusions

Acknowledgments

Time-lapse images: Real example

Examples 0000 000 000 Conclusions

Acknowledgments

3D synthetic example

Conclusions

Acknowledgments

FWI setup

- Grid spacing: 25 m
- Receivers in every grid point in a layer in water column
- 72 shots along a line on y-axis in the middle of the model
- Ricker wavelet with center frequency 5.0 Hz

Receiver layer
Shot line

Examples 0000 0000 0000

Conclusions

Acknowledgments

True 3D time-lapse effect

Examples

Conclusions

Acknowledgments

Inverted 3D time-lapse effect

Example 0000 000 0000 Conclusions

Acknowledgments

Conclusions

- Full waveform inversion are able to reveal time-lapse effects
- Time-lapse artifacts are dependent on receiver and source geometries, and depth
- Difficult to make a conclusion on which of the approaches that is the best
- We are able to detect already known time-lapse effects on the real dataset
- Promising synthetic time-lapse result in three dimensions

Example 0000 000 Conclusions

Acknowledgments

Acknowledgments

This publication has been produced with support from the BIGCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: ConocoPhillips, Gassco, Shell, Statoil, TOTAL, GDF SUEZ and the Research Council of Norway (193816/S60).

Example 0000 000 0000

- Biondi, B., C. Deutsch, R. Gundesø, D. Lumley, G. Mavko, T. Mukerji, J. Rickett, and M. Thiele, 1996, Reservoir monitoring: A multi-disciplinary feasibility study: SEG Technical Program Expanded Abstracts 1996, 1775–1778.
- Johnston, D., R. McKenny, J. Verbeek, and J. Almond, 1998, Time-lapse seismic analysis of fulmar field: The Leading Edge, **17**, 1420–1428.
- Landrø, M.,2011 Seismic Monitoring of an old underground blowout 20 years later: First Break, **29**,39-48.
- Liu, F., L. Guasch, S. A. Morton, M. Warner, A. Umpleby, Z. Meng, S. Fairhead, and S. Checkles, 2012, 3-d time-domain full waveform inversion of a valhall obc dataset: SEG Technical Program Expanded Abstracts 2012, 1–5.
- Lumley, D., 2010, 4d seismic monitoring of co2 sequestration: The Leading Edge, **29**, 150–155.

- Lumley, D., D. C. Adams, M. Meadows, S. Cole, and R. Wright, 2003, 4d seismic data processing issues and examples: SEG Technical Program Expanded Abstracts 2003, 1394–1397.
- Nocedal, J., and S. J. Wright, 2006, Numerical optimization, second ed.: Springer Science+ Business Media, LLC.
- Routh, P., G. Palacharla, I. Chikichev, and S. Lazaratos, 2012, Full wavefield inversion of time-lapse data for improved imaging and reservoir characterization: SEG Technical Program Expanded Abstracts 2012, 1–6.
- Routh, P. S., and P. D. Anno, 2008, Time-lapse noise characterization by inversion: SEG Technical Program Expanded Abstracts 2008, 3143–3147.
- Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, **49**, 1259–1266.

Example 0000 000 0000 Conclusions

Acknowledgments

- Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, **74**.
- Weibull, W., B. Arntsen, and E. Nilsen, 2012, Initial velocity models for full waveform inversion: SEG Technical Program Expanded Abstracts 2012, 1–4.
- Zheng, Y., P. Barton, and S. Singh, 2011, Strategies for elastic full waveform inversion of time-lapse ocean bottom cable (obc) seismic data: SEG Technical Program Expanded Abstracts 2011, 4195–4200.