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SUMMARY

Time-lapse seismic data contains information about changes in
the subsurface, and are nowadays used as an effective tool to
characterize changes in reservoirs due to production of oil and
gas or injection of CO2. The full waveform inversion (FWI)
method can be used to detect these changes. Three different
approaches for time-lapse FWI are presented: (1) performing
independent inversion for each dataset, and then compare the
inversion results; (2) first invert for one of the datasets and
then use the end model from the first inversion as initial model
for the inversion for the other datasets; (3) similar to (2), but
the data consists of a combination of the optimal data of previ-
ous inversion and the difference between the observed datasets.
The three approaches are applied on synthetic and real time-
lapse marine streamer seismic data. The approaches are able
to detect and describe the changes in velocities in the subsur-
face.

INTRODUCTION

Time-lapse seismic data contains information about changes
in the subsurface and is used as a dynamic tool for monitoring
a reservoir during its production lifetime and for monitoring
injection of CO2. Time-lapse data has proven to be an effective
tool in reservoir imaging (Biondi et al., 1996; Johnston et al.,
1998), and for monitoring of CO2 injected in the subsurface
(Lumley et al., 2003; Lumley, 2010).

The full waveform inversion (FWI) method is a technique for
estimating parameters affecting wave propagation using inverse
theory (Virieux and Operto, 2009). The method has been suc-
cessfully applied to estimate wave velocities using real field
data (Liu et al., 2012). Using the FWI method in combina-
tion with time-lapse data it is possible to quantify changes in
reservoirs (Zheng et al., 2011; Routh et al., 2012).

There exist different approaches for applying FWI on time-
lapse data. The naive approach is based on doing indepen-
dent inversions of the different datasets in the time-lapse data,
and then calculate the difference between the obtained mod-
els from the inversions. Another approach is formed by first
inverting for the first dataset, and the resulting model is then
used as input in the inversion for the next dataset. Recently,
a relatively similar approach where, in addition, the observed
dataset is slightly modified by adding the observed data residu-
als to the synthetic data from the first inversion, was developed
(Zheng et al., 2011). The three approaches have been applied
on synthetic data with success.

In this study, we try the above mentioned approaches on both
synthetic and real time-lapse data where we estimate velocity
changes in the subsurface. The synthetic example is a realis-
tic model of the Gullfaks field, where we simulate time-lapse
changes by varying the fluid content in the reservoir. For the

real data example we use datasets from a field in the Norwe-
gian North sea, where gas leaked from one of the produc-
ing wells into subsurface formations. The first dataset was
acquired before the leakage and the second dataset was ac-
quired after the leakage. Thus, there exist differences in the
two datasets which the FWI method should be able to quan-
tify.

TIME-LAPSE FULL WAVEFORM INVERSION

The FWI method is an algorithm which (iteratively) searches
for a model that describes given data, by gradually minimizing
a given objective function. In seismic inversion problems, the
objective function is a measure of the dissimilarity between
measured data, and data modeled using the current inverted
model; when the two models are similar, the datasets should
also be similar. In general terms the inverse problem is simply
written as:

Find m such that S(m) is minimized. (1)

Here, m is the model and S(m) is the objective function. Search-
ing for the minimum is done using an iterative minimization
algorithm (Nocedal and Wright, 2006), which in general terms
is written as

mk+1 = mk−αkgk, (2)

where αk > 0 is the step length and gk is the gradient of S(m)
with respect to m, at step k. The algorithm requires an initial
model, from which it iterates until some convergence crite-
ria are fulfilled. The model from the last iteration is then the
model describing the observed data best.

Using the adjoint state method (Tarantola, 1984), the gradient
at iteration k can be calculated as a zero-lag cross-correlation
between two wave fields,

gk =
∑
shots

∫ T

0

−→
ψ (mk, t)

←−
ψ (mk, t)dt, (3)

where −→ψ (mk, t) is a wave field forward propagated from the
source position, and←−ψ (mk, t) is a backward propagated wave
field where the data residuals are used as sources at the re-
ceiver positions. For more details and examples about the
FWI method, see Virieux and Operto (2009) and the references
given therein.

One of the major issues with the FWI method is the local/global
minima challenge. The ideal solution to eq. (1) using an iter-
ative method is the global minimum. In practice, finding the
global minimum of the problem is difficult due to the strong
non-linearity in the problem, many unknowns, and high com-
putational requirements. The iterative optimization method in
eq. (2) is a local search algorithm, which not always approach
the global minimum. Thus, the algorithm may be trapped in
a local minima basin. To avoid cycle skipping (Virieux and
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Operto, 2009), and convergence towards an acceptable solu-
tion, a good starting model is necessary. One strategy to create
reliable initial models is by using wave equation migration ve-
locity analysis (WEMVA) (Weibull et al., 2012).

Time-lapse FWI can be formulated in several ways. In this
study we use three different approaches. Assume that two dif-
ferent datasets are observed at different times Ti, and denote
the dataset at T1 for dbase, and the dataset at T2 for dmon. The
dataset at T1 is referred to as the base dataset, and the dataset
at T2 is referred to as the monitor dataset. In the first ap-
proach two independent inversions are performed using dbase
and dmon. To reveal the changes in the models the two out-
put models are compared. The second approach is formed by
first running the inversion on dbase. Then the resulting model
is used as initial model for the inversion for dmon. At the end
the two models are compared (Routh and Anno, 2008). In the
third approach the inversion for dbase is done first and the re-
sulting model is used as start model for the inversion for dmon.
The observed data dbase is, in addition, modified as follows

d̂base = dn +(dmon−dbase) = dn +∆d, (4)

where dn is the synthetic data from the last step of the inversion
for dbase (Zheng et al., 2011).

There are some differences between the three approaches that
are worth mentioning. The two inversions in the first approach
are performed independently. Thus, the convergence of the
two inversions must be consistent with each other, otherwise
the inversions may introduce artifacts in the time-lapse images.
The initial model for the base inversion in the two other ap-
proaches is relatively close to the ending model for the monitor
inversion. Therefore, the convergence of the monitor inversion
is faster compared to the base inversion. One can say that the
data residuals acts as “forces” in the monitor inversion in the
second and third approaches, which give strong constraints on
the monitor inversion. Therefore, the amount of possible inver-
sion artifacts is also reduced. The modification of the dataset
in the third approach reduces the possible inversion artifacts
even further.

RESULTS

We test the three approaches using both synthetic and real data.
The synthetic example is created using a model of the Gullfaks
field. Time-lapse field data from the Norwegian North Sea is
used in the real example.

Synthetic Example
The synthetic data is created with the use of a model of the
Gullfaks field, see Figure 1. The interesting part in the model
is the reservoir at the crest of the rotated fault blocks (approx-
imately position 5000 m and 1950 m depth). To create time-
lapse data we use two versions of the model; we define the
base case when the reservoir is filled with oil, and the monitor
case when the reservoir is filled with water. Between the two
models there are P-wave velocity changes in the range 0−153
m/s, and the changes are only locally within the reservoir.

Using the two models we simulate a marine streamer survey

Figure 1: The true model for the P-wave velocity. The reser-
voir of interests is located at the top of the middle faults, at
approximately 5000 m position and 2000 m depth.

Figure 2: The initial model for the P-wave velocity.

Figure 3: Data residual at the first (a) and last (b) iteration
for the inversion using the base dataset. A time-gain has been
applied.
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Figure 4: Synthetic example time-lapse image for approach
one.

Figure 5: Synthetic example time-lapse image for approach
two.

Figure 6: Synthetic example time-lapse image for approach
three.

consisting of 370 shots with a 6 km streamer. The streamer has
300 receivers which are separated by 20 m. The shot interval
is 20 m. The source wavelet is a Ricker wavelet with a peak
frequency of 5.0 Hz. The WEMVA method is used to produce
the initial model for the inversions, see Figure 2.

A comparison of a shot residual at the first and last inversion
step is shown in Figure 3. The figure shows a good match
between the observed and simulated datasets, and thus the in-
version is able to find a model which describe the data. The
time-lapse FWI results using approach one is given in Figure 4,
approach two in Figure 5, and approach three in Figure 6. All
three approaches are able to give the correct velocity change in
the reservoir. Some artifacts right above and below the reser-
voir are visible, and approach three seems to have the smallest
artifacts. Approach two suffers from large differences between
the two inversions all over the model.

Real Example
The time-lapse real dataset is recorded over a field in the Nor-
wegian North Sea. The base dataset was acquired in 1988 and
the monitor dataset was acquired in 1990. Between the two
surveys the field was exposed to a leakage in one of the pro-
ducing wells. Each of the two datasets consists of 230 shots.
The streamer has 95 receivers with a spacing of 12.5 m, and
the total length is 1253 m. The datasets are regularized into
the same geometry, scaled and filtered with a bandpass filter
with the band 0− 15 Hz, before they are used in the inver-
sions. Similar to the synthetic example the initial model for
the inversion is produced using the WEMVA method.

The time-lapse FWI results for approach one are given in Fig-
ure 7. The blow-out well is placed at position 3400 m in the
figure. From other types of analysis of the datasets, an anomaly
at 450−500 m below the well is a well-known time-lapse ef-
fect. This anomaly is a result of gas leaking into the forma-
tions, which resulted in an decrease in the velocities of the
rocks. From the image in Figure 7 a clear anomaly is visible
at 450−500 m depth. In addition, a chimney shaped effect is
visible below the anomaly. Figure 8 shows the results of the
inversion using the second approach. The anomaly is visible
on the inversion results, though not as large as in the first ap-
proach. The chimney pattern is not visible in the image. The
inversion results using approach three are provided in Figure
9, and the image is very similar to the image using approach
two.

Working with real data involves uncertainties. One of the ma-
jor uncertainties in time-lapse data is the repeatability of the
data, which in practice is very difficult to achieve. Noise is
also another type of uncertainty that affects the inversion. In
all the results strong time-lapse effects are visible in the sea
bottom (at 100 m depth), which in addition differs between
the three images. These time-lapse effects are not present in
the field, and thus are regarded as artifacts from the inversions.
For approach two and three, repeated oscillations in depth are
visible in the images. These artifacts may be explained by the
narrow band frequency content of the real dataset.

To speed up the convergence and improve the inversion results,
a common approach is to apply regularization in S(m). In our
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Figure 7: Real example time-lapse image for approach one.

Figure 8: Real example time-lapse image for approach two.

Figure 9: Real example time-lapse image for approach three.

inversions no regularization was applied, and this might, in
addition to the above mentioned uncertainties, explain the in-
stability of the results, especially for the real example.

CONCLUSION

In this study we have applied three different approaches for
time-lapse FWI on synthetic and real time-lapse seismic data.
All three approaches are able to recover time-lapse changes in
the velocities. The differences in the time-lapse images be-
tween the three approaches are large. The third approach gave
the best images for the synthetic example. Hence, an time-
lapse FWI approach where one uses the base model in combi-
nation with some data modification, give strong constraints on
the inversions. As a result, the approach is able to detect local
time-lapse changes in the models, and the inversion converges
relatively fast. The images for the three approaches using real
time-lapse data are different, and include several uncertainties
that may be explained by the lack of repeatability of the data,
noise and narrow frequency band in the data. However, the
approaches are able to detect a well-known gas leakage into
a subsurface formation, though with differences in the size of
the gas anomaly.
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