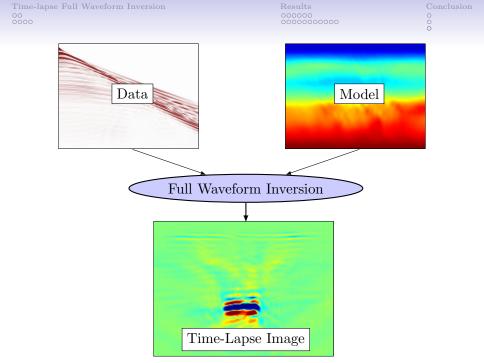
Results 000000 00000000000 Conclusion 0 0


Elastic Time-lapse Full Waveform Inversion

Espen Birger Raknes, Wiktor Weibull, and Børge Arntsen

Norwegian University of Science and Technology (NTNU) Department of Petroleum Engineering & Applied Geophysics E-mail: espen.raknes@ntnu.no

> ROSE Meeting 2013 April 23rd 2013

Results 000000 000000000000 Conclusion 0 0

Outline

Time-lapse Full Waveform Inversion

A Quick Overview of Full Waveform Inversion Time-lapse Full Waveform Inversion

Results

Synthetic Example Real Example

Conclusion

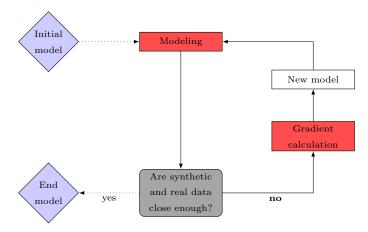
Conclusions and remarks Acknowledgements References

 α_k

A Quick Overview of Full Waveform Inversion **Overall Goal**

Find an Earth model from which it is possible to create synthetic data that is close to some measured data

Define $S(\mathbf{m})$ as the measure between synthetic and measured data. The FWI is then the problem


> $\arg\min S(\mathbf{m})$ \mathbf{m}

Start point Solved using an iterative method $\mathbf{m}_{k+1} = \mathbf{m}_k - \alpha_k \mathbf{g}_k$ model at iteration k \mathbf{m}_k gradient of $S(\mathbf{m})$ at iteration k \mathbf{g}_k End point step length at iteration k

Time-lapse Full Waveform Inversion $\overset{\bigcirc}{\scriptstyle\bigcirc}\overset{\bigcirc}{\scriptstyle\bigcirc}\overset{\bigcirc}{\scriptstyle\bigcirc}\overset{\bigcirc}{\scriptstyle\bigcirc}$

Results 000000 00000000000000 Conclusion 0 0

Schematic View of FWI

Syncronization In parallel

Results 000000 0000000000000

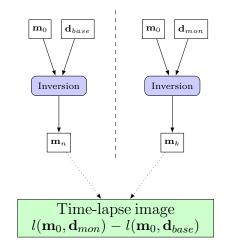
Time-lapse Full Waveform Inversion

Goal

Use full waveform inversion to quantify changes in time for parameters affecting wave propagation.

Different ways of doing this:

Approach 1: Two independent inversions of base and monitor

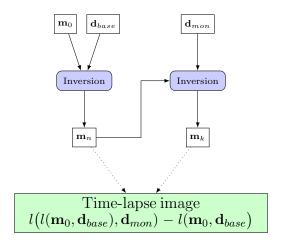

- Approach 2: Invert first for base, and use the end model as input for monitor
- Approach 3: Invert first for base, and use the end model in combination with a data modification as input for monitor

The time-lapse image is found by comparing the two end models.

Time-lapse Full Waveform Inversion ${}^{\circ\circ}_{\circ \bullet \circ \circ}$

Results 000000 00000000000 Conclusion o o

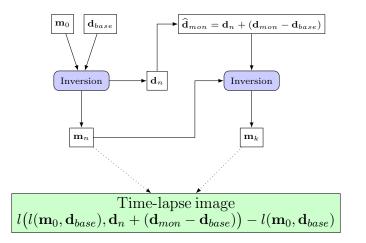
Approach 1



Definition: l(m, d)
is the inverted model
using m as initial model
and d as observed data.

Time-lapse Full Waveform Inversion ${}^{\bigcirc}_{\bigcirc \bigcirc}_{\bigcirc \bigcirc \bigcirc}$

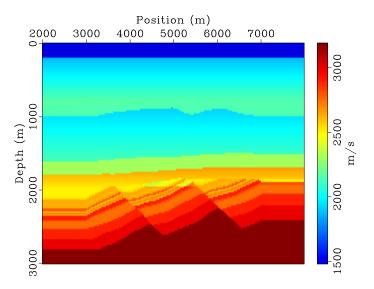
Results 000000 000000000000 Conclusion 0 0


Approach 2

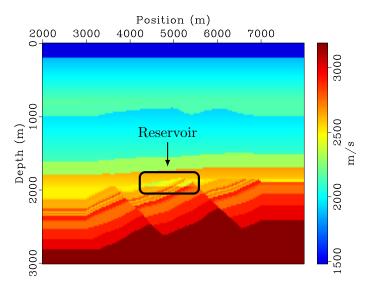
Time-lapse Full Waveform Inversion $_{\circ\circ\circ}^{\circ\circ}$ 0000

Results 000000 000000000000000 Conclusion 0 0

Approach 3

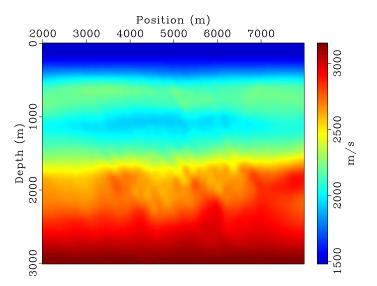


Conclusion 0 0

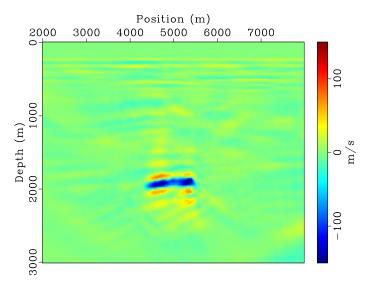

Synthetic Example

- Test model: Elastic model of the Gullfaks field.
- Base: Oil filled reservoir
- Monitor: Water filled reservoir
- P-wave velocity changes locally within reservoir: 0-153 m/s
- Marine streamer survey: 370 shots and 6 km streamer length
- Streamer: 300 receivers separated by 20 m
- Shot interval: 20 m
- Source signature: Ricker wavelet with peak frequency 5.0 Hz

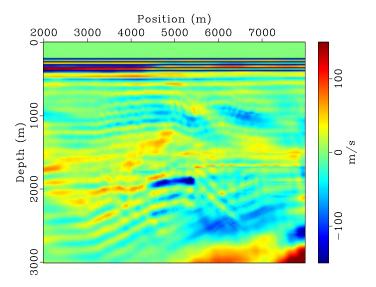
True Model



True Model

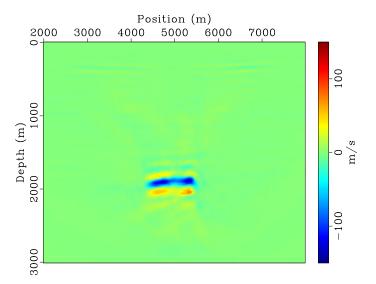

 Conclusion 0 0

Initial Model



 Conclusion 0 0

Time-Lapse Image Approach 1



Time-Lapse Image Approach 2

Results 000000 Conclusion 0 0

Time-Lapse Image Approach 3

Results 000000 0000000000 Conclusion 0 0

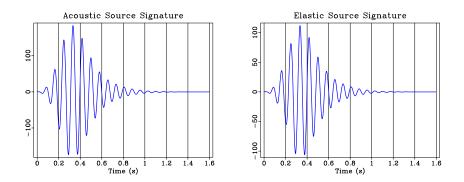
Real Example

- Time-lapse data from the Norwegian North Sea
- Base dataset accuired in 1988 and monitor dataset in 1990
- Between the dataset the field was exposed to a subsurface gas leakage in one of the producing wells
- Marine streamer survey: 230 shots and 1253 m streamer length
- Streamer: 95 receivers separated by 12.5 m
- Shot intervall: 12.5 m

From Acoustic to Elastic FWI

The initial model is obtained using wave equation migration analysis (WEMVA).

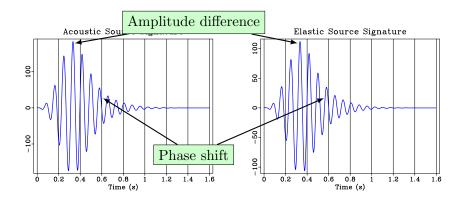
To obtain the S-wave velocity we use the following empirical V_p/V_s relation [Mavko et al., 2009]

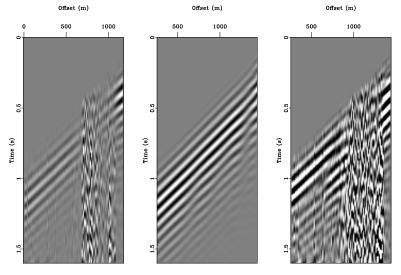

$$V_s = 0.862V_p - 1172 \text{ (m/s)}.$$

We are inverting for P-wave and S-wave velocities, and leaving the density constant during the inversion.

Results 000000 0000000000 Conclusion 0 0

Source Estimation

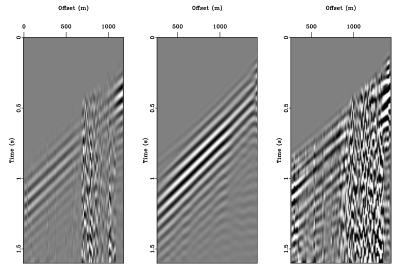

Estimated using FWI: The back propagated wave field at the source position is the gradient of the source.


Results 000000 0000000000 Conclusion 0

Source Estimation

Estimated using FWI: The back propagated wave field at the source position is the gradient of the source.

QC: Elastic Inversion - First iteration

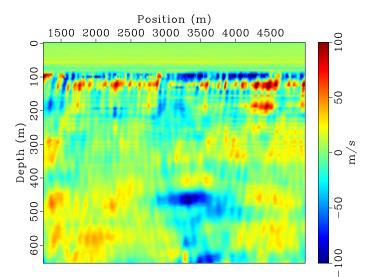

Real data

Synthetic data

Residual

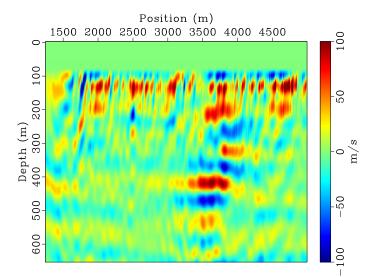
Results 000000 00000000000

QC: Elastic Inversion - Last iteration

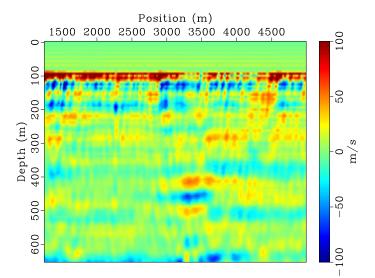

Real data

Synthetic data

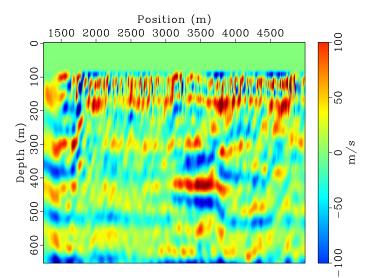
Residual


Results 000000 00000000000 Conclusion 0 0

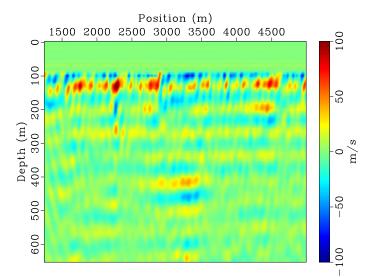
Acoustic Time-Lapse Image: Approach 1


Results 000000 0000000000000 Conclusion 0 0

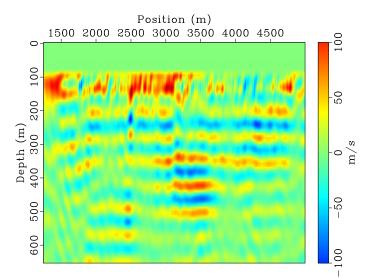
Elastic Time-Lapse Image: Approach 1


 Conclusion o o

Acoustic Time-Lapse Image: Approach 2


Results 000000 0000000000000 Conclusion 0 0

Elastic Time-Lapse Image: Approach 2


Results 000000 0000000000 Conclusion o o

Acoustic Time-Lapse Image: Approach 3

Results 000000 000000000 Conclusion o o

Elastic Time-Lapse Image: Approach 3

Results 000000 0000000000000 Conclusion • •

Conclusions and Remarks

- Full waveform inversion can be used to quantify time-lapse changes in the subsurface
- Source estimation results in different source signatures for acoustic and elastic inversion
- Several artifacts appear in the time-lapse images that must be studied further. Add regularization?
- Modeling in 2D while data is 3D: No geometrical spreading. May improve results by inverting in 3D?

Results 000000 00000000000

Acknowledgements

We thank the Norwegian Research Council, BIGCCS, the ROSE consortium and Statoil Petroleum AS for financing this research.

Results 000000 000000000000000 Conclusion o o

References I

- Biondi, B., C. Deutsch, R. Gundesø, D. Lumley, G. Mavko, T. Mukerji, J. Rickett, and M. Thiele, 1996, Reservoir monitoring: A multi-disciplinary feasibility study: SEG Technical Program Expanded Abstracts 1996, 1775–1778.
 - Johnston, D., R. McKenny, J. Verbeek, and J. Almond, 1998, Time-lapse seismic analysis of fulmar field: The Leading Edge, 17, 1420–1428.

- Liu, F., L. Guasch, S. A. Morton, M. Warner, A. Umpleby, Z. Meng, S. Fairhead, and S. Checkles, 2012, 3-d time-domain full waveform inversion of a valhall obc dataset: SEG Technical Program Expanded Abstracts 2012, 1–5.
- Lumley, D., 2010, 4d seismic monitoring of co2 sequestration: The Leading Edge, **29**, 150–155.
- Lumley, D., D. C. Adams, M. Meadows, S. Cole, and R. Wright, 2003, 4d seismic data processing issues and examples: SEG Technical Program Expanded Abstracts 2003, 1394–1397.
- Mavko, G., Mukerji, T., Dvorkin, J., 2009, The Rock Physics Handbook, Cambridge University Press.

Results 000000 0000000000000 Conclusion 0 0

References II

- Nocedal, J., and S. J. Wright, 2006, Numerical optimization, second ed.: Springer Science+ Business Media, LLC.
- Routh, P., G. Palacharla, I. Chikichev, and S. Lazaratos, 2012, Full wavefield inversion of time-lapse data for improved imaging and reservoir characterization: SEG Technical Program Expanded Abstracts 2012, 1–6.

Routh, P. S., and P. D. Anno, 2008, Time-lapse noise characterization by inversion: SEG Technical Program Expanded Abstracts 2008, 3143–3147.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, **49**, 1259–1266.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, **74**.

Weibull, W., B. Arntsen, and E. Nilsen, 2012, Initial velocity models for full waveform inversion: SEG Technical Program Expanded Abstracts 2012, 1–4.

Zheng, Y., P. Barton, and S. Singh, 2011, Strategies for elastic full waveform inversion of time-lapse ocean bottom cable (obc) seismic data: SEG Technical Program Expanded Abstracts 2011, 4195–4200.