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ABSTRACT

The U/D imaging condition for shot profile migration can be
used to estimate the angle dependent reflection coefficient, but
is difficult to implement numerically because of the spectral
division involved. Most techniques for stabilizing the division
require a damping factor which might be difficult to estimate
and which also introduces bias into the final result. A stable re-
sult can be achieved by approximating the imaging condition
with a crosscorrelation of the up- and downgoing wavefields
at zero time lag, but this will lead to incorrect amplitude-
versus-angle (AVA) behavior of the estimated reflection coeffi-
cient. We use a simple model for wave propagation of primary
reflections in the wavenumber frequency domain and invert the

model with respect to the reflection coefficient. By using the
properties of wavefield extrapolators it can then be shown that
the reflection coefficients can be estimated by crosscorrelation
of the upgoing wavefield and a downgoing wavefield where the
initial wavefield is the inverse of the wavefield generated by a
point source. The new imaging condition gives the correct
AVA behavior for horizontal reflectors. For dipping reflectors
it is shown that a postmigration correction factor can be used
to recover the correct angle behavior of the reflection coefficient.
The new imaging condition is numerically stable, does not in-
volve damping factors, is simple to implement numerically,
and is a simple modification of the classical crosscorrelation im-
aging condition. Numerical examples confirm the correct AVA
behavior of the new imaging condition.

INTRODUCTION

Depth imaging should ideally be capable of recovering not only
an image of the subsurface, but also angle-dependent reflection co-
efficients. For depth migration schemes based on high-frequency
asymptotics, there are established and well-developed amplitude-
preserving algorithms (Bleistein, 1987; Schleicher et al., 1993;
Tygel et al., 1993; Ursin, 2004) capable of computing estimates
of angle-dependent reflection coefficients in addition to structural
images.
For migration based on one-way wave equations, Claerbout

(1971) introduces an imaging condition for shot-profile migration
using the ratio between up- and downgoing wavefields giving cor-
rect estimates of the reflection coefficient (Deng and McMechan,
2007). However, this condition is difficult to implement due to
the instability of spectral division leading to increased noise level.
A wide variety of approaches to stabilize Claerbout’s (1971)
imaging condition have been investigated by Cazzola et al.

(2002), Valenciano and Biondi (2003), Zhang et al. (2005),
Schleicher et al. (2008), and Ursin et al. (2012).
Claerbout (1971) also suggests an approximate crosscorrelation

imaging condition for shot-profile migration which has been exten-
sively used due to its simplicity and stability. Rickett and Sava
(2002) extend this imaging condition to include offset information
and to compute angle gathers. Designed for structural imaging, this
approach does not give correct estimates of the amplitude-versus-
angle (AVA) response.
We derive a modification of Claerbout’s (1971) crosscorrelation

imaging condition that produces common-angle gathers with cor-
rect AVA relationship. The method is simple to implement and re-
quires only a modification of the initial wavefield in the downward
propagation and decomposition into plane waves in the midpoint-
slowness domain (de Bruin et al., 1990). The method estimates AVA
responses from locally plane and dipping reflectors, given that the
local dip angle is known.
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In the next section, we consider a simple model for primary re-
flections and derive the new imaging condition by inverting the
model with respect to the reflection coefficient. We also compare
our method with other approaches to shot-profile migration. The
section on numerical results demonstrate that correct AVA response
can be obtained for simple models and a more realistic reser-
voir model.

IMAGING CONDITION

We consider a single shot record with a seismic source at lateral
position xs at the surface of an acoustic medium where the wave
propagation velocity c and density ρ are functions of depth only.
In the following we will only consider isotropic wave propagation,
although the approach presented here can be generalized to the
anisotropic case. We consider plane waves where the principal di-
rection of propagation is taken along the x3-axis (“depth”) and the
transverse axes are ðx1; x2Þ. The wavenumber is denoted by
m ¼ ðk1; k2; k3Þ. We will also use the 2D horizontal wavenumber
defined by k ¼ ðk1; k2Þ. The wavenumber m is related to the slow-
ness p by

m ¼ ωp; (1)

where ω is the angular frequency and the vertical wavenumber k3 is
given by

k3 ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω∕cÞ2 − k21 − k22
p

; if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
≤ ω∕c;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 − ðω∕cÞ2

p
; if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
> ω∕c:

(2)

Pressure-normalized imaging condition

The pressure and vertical component of the particle velocity can
be decomposed into up- and downgoing waves. This decomposition
is not unique (Ursin, 1983; Ursin et al., 2012), but the most common
approach is to use so-called pressure normalization, where the
upgoing wave U at depth x3 can be related to the downgoing
wavefield D at the same depth using a simplified model for primary
reflections, as shown in equation A-18 in Appendix A,

Uðk; x3;ωÞ ¼ Rðk; x3ÞDðk; x3;ωÞ: (3)

Here, R is the reflection coefficient, and the downgoing wavefieldD
at depth can be estimated from the downgoing wavefield at the sur-
face D0 by

Dðk; x3;ωÞ ¼ exp

�Z
x3

0

ik3ðζÞdζ
�
D0ðk;ωÞ; (4)

where D0 is due to a point source (Ursin, 1983)

D0ðk;ωÞ ¼ −
2πSðωÞ expð−iq · xsÞ

ik3
: (5)

Here, SðωÞ is the source signature, q ¼ ðk1; k2Þ is the transverse
wavenumber while xs ¼ ðxs1; xs2Þ is the source position. The up-
going wavefield is computed from the data U0 at the surface

Uðk; x3;ωÞ ¼ exp

�
−
Z

x3

0

ik3ðζÞdζ
�
U0ðk;ωÞ: (6)

The reflection coefficient can be found from equation 3 as

Rðk; x3Þ ¼
Uðk; x3;ωÞ
Dðk; x3;ωÞ

; (7)

and by using equations 4 and 5, equation 7 becomes

Rðk; x3;ωÞ ¼ Uðk; x3;ωÞD 0�ðk; x3;ωÞ; (8)

where the new downgoing wavefield D 0

D 0ðk; x3;ωÞ ¼
�Z

x3

0

ik3ðζÞdζ
�
D 0

0ðk;ωÞ (9)

is due to an initial inverse downgoing wavefield

D 0
0ðk;ωÞ ¼ expð−iq · xsÞ

ik3SðωÞ
2πjS2ðωÞj : (10)

The division by the source spectrum can be stabilized by adding a
small number to the denominator.
The reflection coefficient in 8 can be Fourier-transformed over

the wavenumbers and frequency to the spatial domain to obtain
the convolution integral

Rðx; x3;ωÞ ¼
Z

dx 0Uðx − x 0; x3;ωÞD 0�ðx 0; x3;ωÞ; (11)

where x ¼ ðx1; x2Þ and * represents the complex conjugate. The up-
and downgoing wavefields only depend on the distance between the
source position xs and the arguments x − x 0. The integration over x 0

can then be carried out over the source position xs instead. We also
introduce the subsurface midpoint- and offset coordinates xm and h
by the definitions x ¼ 2xm − h and x 0 ¼ xm − h∕2. Finally averag-
ing the reflection operator over frequency, one obtains after con-
verting integrals to sums

Rðxm;h; x3Þ ¼
1

ð2πÞ
X
ω

X
xs

Uðxm þ h∕2; x3; xsÞ

×D 0�ðxm − h∕2; x3; xsÞ; (12)

where we have introduced the source coordinate xs as an extra
argument.
de Bruin et al. (1990) point out that the integration over frequency

in equation 12 implies summation over plane waves with different
angles. To ensure averaging the reflection operator over constant
angles, de Bruin et al. (1990) introduce a mapping to slowness be-
fore summation. Following de Bruin et al. (1990), we then get the
wave equation slowness transform

Rsðxm;ph; z;xsÞ ¼
1

ð2πÞ
X
ω

X
h

expðiωphhÞUðω;xm

−h∕2; x3;xsÞD 0�ðω;xmþh∕2; x3;xsÞ; (13)
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where the slowness ph is related to the offset wavenumber kh
by ph ¼ kh∕ω. Summation over source positions improves the
estimate and ensures proper angular coverage,

Rðxm; ph; x3Þ ¼
X
xs

Rsðxm; ph; x3; xsÞ: (14)

Equations 13 and 14 provide a new imaging condition that recovers
correctly the angle-dependent plane-wave reflection coefficient
given that the amplitudes of the up- and downgoing wavefields
U and D are accurate. It avoids the division by the energy of
the downgoing wavefield (Ursin et al., 2012) and gives a stable
estimate of the plane-wave reflection coefficient.

Flux-normalized imaging condition

By using flux-normalized wavefields, the differential equations
for the up- and downgoing waves become simpler and potentially
will lead to more accurate wavefield extrapolation. The flux normal-
ized wavefields ~U and ~D are related through the equation (see equa-
tion A-26 in Appendix A)

~Uðk; x3;ωÞ ¼ ~Rðk; x3Þ ~Dðk; x3;ωÞ; (15)

where ~R is given by equation A-25.
The upgoing wavefield ~U0 at the surface is related to the pressure-

normalized field U0 by (Ursin et al., 2012)

~U0ðk; x3;ωÞ ¼
ffiffiffiffi
2

Z

r
U0ðk;ωÞ; (16)

where the impedance Z is given by Z ¼ ρω∕k3. The initial inverse
downgoing wavefield D 0 is obtained as (Ursin et al., 2012)

~D 0
0ðk;ωÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
k3ρ0ω

q
2πS�ðωÞ : (17)

Using the new flux-normalized wavefields ~U0 and ~D 0
0, wave extrapo-

lation can be performed as for the downgoing wavefield as in equa-
tions 4 and 6. The estimate of the plane-wave reflection coefficient is
computed from

~Rðxm; ph; x3Þ ¼
1

ð2πÞ
X
ω

X
xs

X
h

expðiωphhÞ ~Uðω; xm

− h∕2; x3; xsÞ ~D 0�ðω; xm þ h∕2; x3; xsÞ: (18)

Heterogeneous medium

The imaging conditions given above in equations 13 and 16 can
be proved to be correct for heterogeneous media with smooth veloc-
ity variations. The up- and downgoing pressure-normalized wave-
fields can then be recursively extrapolated using the explicit
operator approach (Holberg, 1988),

Uðx1; x2; x3 þ Δx3Þ ¼
X
x 0
1
;x 0

2

f�ðx1 − x 0
1; x2 − x 0

2;ω∕cÞ

× Uðx 0
1; x

0
2; x3Þ;

Dðx1; x2; x3 þ Δx3Þ ¼
X
x 0
1
;x 0

2

fðx1 − x 0
1; x2 − x 0

2;ω∕cÞ

×Dðx 0
1; x

0
2; x3Þ; (19)

where f is a band-limited approximation to the phase-shift operator
depending on the ratio between the frequency and the local velocity,
and Δx3 is the discretization interval in the vertical direction. Equa-
tion 19 can also be used to extrapolate the flux-normalized wave-
fields ~U and ~D.

RELATION TO OTHER IMAGING CONDITIONS

Rickett and Sava (2002) proposed the extended imaging condi-
tion given by

Table 1. Horizontally layered model, with density contrast
between layers. The velocity is constant for all layers.

Layer thickness (m) Velocity (m∕s) Density (kg∕m3)

1000 2000 1000

1000 2000 1200

1000 2000 1000

— 2000 1200

Figure 1. Shot record generated using the layered model given in
Table 1.

True amplitude imaging condition S223
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Rðxm; h; x3Þ ¼
1

2π

X
xs

X
ω

Uðxm − h∕2; x3; xsÞ

×D�ðxm þ h∕2; x3; xsÞ: (20)

The imaging condition in equation 20 is similar to the imaging con-
dition in equation 12, the only difference is that D 0 is substituted
with D.
In the wavenumber-frequency domain, the estimate R̂ of the

reflection coefficient corresponding to the extended imaging
condition (Rickett and Sava, 2002) is equal to

R̂ðx3Þ ¼ Rðx3ÞD0D0
� ¼ Rðx3Þ

jSðωÞj2
4π2k23

: (21)

Zhang and Sun (2008) propose an imaging condition where the
initial downgoing wavefield is given by

D̂0ðk;ωÞ ¼ −
expð−iqsxsÞSðωÞ

iω
; (22)

which leads to the estimate of the reflection coefficient

R̂ðk; x3Þ ¼ Rðk; x3Þ
jSðωÞj2
2πk3ω

: (23)

Because k3 is proportional to ðω∕cÞ cosðϕÞ, where ϕ is the reflec-
tion angle, it is seen that the imaging condition given by equation 21
gives an estimate of the reflection coefficient proportional to the
inverse of cos2ðϕÞ, whereas the estimate obtained from equation 23
is proportional to the inverse of cosðϕÞ.

AVA GATHERS

In the preceding sections, we derived expressions for computing
the reflection operator as a function of horizontal slowness ph. For a
wave reflected from a plane dipping reflector and where the velocity

can be assumed to be constant equal to c, the re-
lation between the incidence angle ϕ and slow-
ness ph is given by (Rickett and Sava, 2002)

phx ¼
1

c
sinðϕÞ cosðαÞ cosðθÞ;

phy ¼
1

c
sinðϕÞ cosðαÞ sinðθÞ; (24)

where ϕ is the reflection angle, α is the dip angle,
and θ is the direction of the maximum down-dip
direction. Equation 24 can be used to map the
reflectivity from offset slowness to opening-
and dip angle.
In Appendix B, it is shown that the reflection

coefficient for a dipping plane reflector for the
pressure-normalized case is given by

Rðϕ; α; x3Þ ¼
�

2 cosðϕ − αÞ
cosðϕþ αÞ þ cosðϕ − αÞ

�
× rðϕ − αÞ; (25)

where r is the linearized plane-wave reflection
coefficient. If we assume that the wave velocities
in the neighborhood of a given midpoint location
are approximately constant, we can use equa-
tion 25 to compute the plane-wave reflection co-
efficient from the reflection operator as

rðϕ − αÞ ¼ Rðϕ; α; x3Þ
�
cosðϕ − αÞ þ cosðϕþ αÞ

2 cosðϕ − αÞ
�
: (26)

For the flux-normalized approach, one gets

rðϕ − αÞ ¼ ~Rðϕ; α; x3Þ
�
cosðϕ − αÞ þ cosðϕþ αÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðϕþ αÞ cosðϕ − αÞp �

: (27)

If the background model used for the wave extrapolation is not
accurate, the reflection coefficient will be mispositioned in depth.

Table 2. Horizontally layered model, with velocity contrast
between layers. The density is constant for all layers.

Layer thickness (m) Velocity (m∕s) Density (kg∕m3)

1000 2000 1000

1000 2200 1000

1000 2000 1000

— 2200 1000

a) b)

Figure 2. (a) Angle gather for the plane layered model given in Table 1 and (b) rms
amplitude picks of the angle gathers. The AVA is seen to be constant, which is consistent
with a model with density contrasts only.
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If the dip angle α is incorrect, the estimated AVA response of the
reflection coefficient will be affected.
The above relations show that, to successfully extract the plane-

wave reflection coefficient from the reflection operator, the local
reflector dip must be known. An advantage of equations 26 and
27 is that the computation of reflection coefficients can be
performed postmigration.
In the next section, we demonstrate the use of the new imaging

condition given by equation 14 using simple acoustic models and a
more realistic elastic reservoir model.

NUMERICAL RESULTS

In the examples below, the reflection operator is computed using
equations 13 and 14, while the plane-wave reflection coefficient is
extracted using equation 26. The initial inverse wavefield D 0

0 is
computed in the wavenumber frequency domain by equation 6.

Acoustic models

The model shown in Table 1 consists of four plane layers
where the density is different in each layer, while the velocity is

Figure 3. (a) Angle gather for the plane layered
model given in Table 2 and (b) rms amplitude
picks of the events at depths 2 and 3 km. The black
solid line is the theoretical AVA response.

a)

b)

Figure 4. (a) Angle gather computed for the plane
layered model given in Table 1 using Rickett and
Sava (2002) extended imaging condition; (b) rms
amplitude picks of the angle gather. The AVA is
seen to give an incorrect AVA response, with
strongly increasing amplitude with increasing
angle.

True amplitude imaging condition S225
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kept constant throughout the model at 2000 m∕s. Synthetic shot
records were generated using the model given in Table 1 by a
finite-difference acoustic modeling program. A split-spread acquis-
ition geometry was used with 10 m receiver distance and a
maximum half-offset of 5 km and a shot spacing of 10 m. The
source signature was a Ricker wavelet with a peak frequency of
20 Hz. A single shot record is shown in Figure 1.
Equations 14 and 26 were used to compute the angle gather

shown in Figure 2. Figure 2b shows rms amplitude picks extracted
along the three events in the angle gather.
A common scale factor before plotting was applied to the three

amplitude curves, such that the largest amplitude for the reflector at
1 km depth (black curve) is equal to one. The relative amplitudes
between the reflectors are thus preserved. The AVA shows no
significant angle dependence, which is expected in the case of

reflectors with pure density contrast. Moreover, the amplitude levels
of the three events are also approximately equal.
Table 2 contains a plane-layered model with velocity contrasts,

and a corresponding shot record was computed as in the first
example. An angle gather was computed in a similar way as for
Figure 2 and shown in Figure 3 together with the rms amplitude
picks for the events at a depth of 2 and 3 km. The black solid line
shows the theoretical AVA response, which seems to fit well with
the amplitudes picked from the angle gather.
In Figure 4, we have applied the extended imaging condition

given by Rickett and Sava (2002) to the data for the model given
in Table 1 where there is no AVAvariation as shown in Figure 2. The
AVA response in Figure 4 is seen to be incorrect, with amplitude
increasing with angle. This is in accordance with equation 21 pre-
dicting amplitudes to increase by a factor 1∕cos2ðϕÞ, where ϕ is the
reflection angle.
Figure 5 shows a velocity model with a layer dipping at approx-

imately 18° and a flat reflector below. A synthetic split-spread
survey with maximum offset of 5 km and a total of 1000 shots
was acquired over this model. The first shotpoint was positioned
at a horizontal distance of 5 km and the last at 15 km.
Figure 6a shows an angle gather computed at a horizontal

position of 8 km in the model shown in Figure 5 using the shot
records described above. Also, shown in Figure 6b are the rms
amplitude picks of the two events in the angle gather. The event
corresponding to the dipping reflector (black line) and the event
corresponding to the flat reflector (red line) show the same AVA
behavior, as expected.
The effect of ignoring the dip correction given by equation 26 is

shown in Figure 7 where the angle gather has been computed using
only equation 14, omitting the dip correction of equation 26. The
red line shows the rms amplitude pick for the horizontal reflector
while the black line shows the corresponding amplitude pick for the
dipping reflector. As can be observed, the AVA response is incorrect
if the dip correction is not applied.Figure 5. Velocity model with dipping layer.

a)

b)

Figure 6. (a) Angle gather computed for the
velocity model shown in Figure 5 and (b) rms am-
plitude picks for the dipping reflector (black line)
and the plane reflector (red line).
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Figure 8 shows sections obtained by stacking over all angles,
with (left) and without (middle) the dip correction.
The difference (right) between these two sections is significant,

but not large. The angular coverage increases in the up-dip direction
due to the acquisition geometry, causing the difference to be larger
for the upper part of the reflector. In Figure 9, only a narrow angle
range from 23° to 25° have been stacked. The illumination of the
dipping reflector is more even in this angle range, the difference is
still significant, but not large.

Elastic reservoir model

The imaging condition developed in the preceding sections is
valid for an acoustic medium, with acoustic reflection coefficients.
In a real data case, the reflection coefficients are elastic. However,
the model for primary reflections given in equation 1 is approxi-
mately valid, given that the acoustic reflection operator R is
replaced with the corresponding elastic reflection operator Rpp

(Aki and Richards, 1980). This implies that we neglect amplitude
loss due to conversions from P-waves to S-waves.
Figure 10 shows a velocity model of the North Sea. An oil res-

ervoir is located in the middle tilted fault block at a depth of
approximately 2 km. An elastic finite-difference program was used
to compute a synthetic marine survey across the velocity model.
Angle gathers were computed using the new imaging condition
as described in the previous sections, and angle stacks with angles
ranging from 8° to 15° and 25° to 40° are shown in Figures 11 and
12, respectively.
Figure 13 shows an angle gather computed at a horizontal

position of 1.7 km, while Figure 14 shows amplitude picks
from the gather at the top reservoir reflector located at a depth
of 1.850 km and the oil-water contact at a depth of 1.940 km. Com-
parison with the reflection coefficients computed from the P-wave,
S-wave, and density models shows that the new imaging condition

a)

b)

Figure 7. (a) Angle gather computed for the ve-
locity model shown in Figure 5 . No dip correction
was applied to the gather. (b) rms amplitude picks
for the dipping reflector (black line) and the plane
reflector (red line).

Figure 8. Stack sections using the data obtained from the model
shown in Figure 5. All angles were included in the stacks. The
left-hand section was produced from dip corrected angle gathers,
while the section in the middle was produced from angle gathers
with no dip correction. The section to the right shows the difference.

Figure 9. Stack sections using the data obtained from the model
shown in Figure 5. Angles between 23° and 25° were included
in the stacks. The left-hand section were produced from dip-
corrected angle gathers, while the section in the middle was pro-
duced from angle gathers with no dip correction. The section to
the right shows the difference.

True amplitude imaging condition S227
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reproduces the true AVA response, except for small angles, where
the estimates are incorrect.
The dip correction given by equation 26 is insignificant for the

range of dips for most of the reflectors shown in Figure 14, but will
make a difference for the reflections from the steep fault planes, as
shown in Figure 15. The AVA response is significantly different
when the dip correction is applied (circles) and when ignored
(crosses).

DISCUSSION

To be able to extract reliable AVA responses from seismic data,
there are several issues involved, two of them being the accuracy of

the wavefield extrapolation and the imaging condition itself. Here,
we deal with the imaging condition and assume that the up- and
downgoing wavefields can be computed with sufficient accuracy.
The simple dip correction given by equation 26 is only valid

for small contrasts in impedance and for small dip angles. Separate

Figure 10. P-wave velocity for the elastic reservoir model.

Figure 11. Stack of angle gathers between 8° and 15° of the elastic
reservoir model.

Figure 12. Stack of angle gathers between 24° and 40° of the elastic
reservoir model.

Figure 13. Angle gather at horizontal position of 1700 m.

Figure 14. Amplitude picks using the angle gather in Figure 13
showing the oil-water contact (above) and top-reservoir (bottom).
Circles shows the picks, while the solid line shows exact elastic
reflection coefficients.
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information of the local dip is required as well, and can not be pro-
vided by the algorithm itself.
The actual acquisition parameters are a limiting factor for the

accuracy of the AVA response; Figures 14 and 15 demonstrate that
a marine single-spread geometry will lead to incorrect estimates of
the reflection coefficients for small angles. This can be somewhat
improved by careful tapering of the input data but cannot be com-
pletely removed unless a better split-spread type geometry is used
(as in ocean-bottom cable surveys).
The approach presented here for true-amplitude migration is

valid also for the 3D case provided that the crossline sampling in-
terval is small enough to sample the wavefield properly. This is
not usually the case for conventional streamer geometries because
streamer separation is typically of the order of 100 m, and in favor-
able cases as small as 50 m. This is probably not enough to estimate
the correct crossline AVA response, but might be adequate to com-
pensate for the spherical spreading to ensure correct prediction of
the inline AVA response.

CONCLUSIONS

We propose a new source initial condition which stabilizes the
classical imaging condition. The new modified imaging condition
is of crosscorrelation type and avoids instabilities associated with
division of wavefields. This results in a crosscorrelation wave-
equation angle transform which is a direct estimate of the plane-
wave reflection coefficient for a plane horizontal reflector. For a
dipping plane, we propose a simple dip and azimuth correction
which gives an approximate estimate of the plane-wave reflection
coefficient.
The crosscorrelation imaging condition proposed by Claerbout

(1971), and extended by Rickett and Sava (2002), can be easily

modified to produce correct AVA gathers for locally plane
and dipping reflectors. This only involves changing the initial
point-source wavefield to a modified wavefield with a radiation
pattern different from a point source and a postmigration dip-
correction.
The results were derived for a scalar wave equation, but numeri-

cal results show that they can approximately be extended to PP
reflections in elastic media.
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APPENDIX A

ONE-WAY WAVE EQUATIONS

We consider an acoustic medium where the density ρðzÞ and
velocity cðzÞ is a function of depth only. After Fourier transforming
the equations of motion over frequency ω and horizontal wavenum-
bers k ¼ k1; k2, one obtains the following matrix equation for the
pressure P and the vertical particle velocity V3 (Ursin, 1983):

∂3b ¼ iωAb; (A-1)

where the matrix A is

A ¼
"
0 −ρ
1
ρ

�
1
c2 −

k2
1
þk2

2

ω2

�
0

#
(A-2)

and the vector b is

b ¼
�
P
V3

�
: (A-3)

The up- and downgoing waves U and D are related to the pressure
and vertical particle velocity through the linear transformation

w ¼
�
U
D

�
¼ L−1b: (A-4)

Substituting w for b in equation A-1 leads to the differential equa-
tion for w

∂3w ¼ ðiωΛ − L−1∂3LÞw; (A-5)

where Λ is a diagonal matrix composed of the eigenvalues pu
3 and

pd
3 of A

Λ ¼ L−1AL ¼
�
−pu

3 0

0 pd
3

�
: (A-6)

Figure 15. Amplitudes (circles) picked from an angle gather posi-
tioned at a distance of 2 km for a reflector at a depth of 2.2 km. The
dip of the reflector is 36°. The crosses shows the corresponding
picks without applying the dip correction given by 26.

True amplitude imaging condition S229

D
ow

nl
oa

de
d 

04
/1

3/
14

 to
 1

29
.2

41
.2

21
.2

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



We will also make use of the impedances Zd ¼ ρ∕pd
3

and Zu ¼ ρ∕pu
3 .

Pressure-normalized wavefields

The eigenvalue matrix of A can be scaled in different ways. The
so-called pressure-normalized scaling corresponds to the following
eigenvalue matrix:

L ¼
�
1 1

−1∕Zu 1∕Zd

�
; (A-7)

with inverse

L−1 ¼ 1

Zu þ Zd

�
Zu −ZdZu

Zd −ZdZu

�
: (A-8)

The differential equation A-5 becomes

∂3w ¼ iω

�−pu
3 0

0 pd
3

�
wþ 2

Zu þ Zd

×
�
−ZdrðZuÞ ZurðZdÞ
−ZdrðZuÞ ZurðZdÞ

�
w; (A-9)

where rðZÞ is given by

rðZÞ ¼ 1

2
Z−1∂3Z: (A-10)

Neglecting the interaction between up- and downgoing waves leads
to the following simplified differential equation for w:

∂3w ¼ iω

�
−pu

3 0

0 pd
3

�
w; (A-11)

with solutions

Uðx3Þ ¼ exp

�
−
Z

x3

0

iku3ðζÞdζ
�
U0 (A-12)

and

Dðx3Þ ¼ exp

�Z
x3

0

ikd3ðζÞdζ
�
D0: (A-13)

Here,D0 is the initial downgoing wavefield at the surface for a point
source, and U0 is the measured data at the surface. This solution
completely ignores the interaction between the up- and downgoing
waves, but a slightly better solution taking the interaction partly into
account can be obtained by inserting the approximate solution for
the downgoing wavefield given by equation A-13 back into the
right-hand side of equation A-9. By neglecting the diagonal terms
and solving for U, one gets

Uðx3Þ ¼ exp

�
−
Z

x3

0

iku3ðζÞdζ
� Z

x3

0

exp

�Z
ζ

0

ikd3ðζ 0Þdζ 0
�

× RðζÞDðζÞdζ; (A-14)

where R is given by

Rðx3Þ ¼
2Zuðx3Þ

Zuðx3Þ þ Zdðx3Þ
r½Zdðx3Þ�: (A-15)

In the simplified case where the reflections are caused by abrupt
changes in the material parameters, R can be described by

R ¼ Rðx 0
3Þδðx 0

3 − x3Þ; (A-16)

and the upgoing wave U is then related to the downgoing wave D
by

Uðx3Þ ¼ Rðx3Þ exp½iðkd3 − ku3Þx3�Dðx3Þ: (A-17)

For a horizontal interface, ku3 ¼ kd3 and we get

Uðx3Þ ¼ Rðx3ÞDðx3Þ: (A-18)

Flux-normalized wavefields

By scaling the eigenvalue matrix of A in the following way

~L ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffi

Zu
p ffiffiffiffiffiffi

Zd
p

−1∕
ffiffiffiffiffiffi
Zu

p
1∕

ffiffiffiffiffiffi
Zd

p
�
; (A-19)

we get the so-called flux-normalization. The inverse of ~L is

~L−1 ¼ 1ffiffiffi
2

p ðZu þ ZdÞ

� ffiffiffiffiffiffi
Zu

p
−Zd

ffiffiffiffiffiffi
Zu

pffiffiffiffiffiffi
Zd

p
Zu

ffiffiffiffiffiffi
Zd

p
�
: (A-20)

The differential equation A-5 becomes

∂3w ¼ iω

�−pu
3 0

0 pd
3

�
wþ 1

Zu þ Zd

×

"
ðZu − ZdÞrðZuÞ

ffiffiffiffiffiffiffiffiffiffiffi
ZuZd

p
rðZdÞffiffiffiffiffiffiffiffiffiffiffi

ZuZd
p

rðZuÞ ðZu − ZdÞrðZdÞ

#
w: (A-21)

Neglecting the last term in equation A-21 leads to

~Uðx3Þ ¼ exp

�
−
Z

x3

0

iku3ðζÞdζ
�
~U0 (A-22)

and

~Dðx3Þ ¼ exp

�Z
x3

0

ikd3ðζÞdζ
�
~D0: (A-23)

Inserting equation A-23 into the right-hand side of equation A-21
and neglecting the diagonal terms gives an expression for the up-
going wavefield

~Uðx3Þ ¼ exp

�
−
Z

x3

0

iku3ðζÞdζ
� Z

x3

0

exp

�Z
ζ

0

ikd3ðζ 0Þdζ 0
�

× ~RðζÞDðζÞdζ; (A-24)

where ~R is given by
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~Rðx3Þ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zuðx3ÞZdðx3Þ

p
Zuðx3Þ þ Zdðx3Þ

r½Zdðx3Þ�: (A-25)

In the simplified case where the reflections are caused by abrupt
changes in the material parameters, the upgoing wave ~U is then
related to the downgoing wave ~D by

~Uðx3Þ ¼ ~Rðx3Þ exp½iðkd3 − ku3Þx3� ~Dðx3Þ: (A-26)

For a plane-horizontal interface, ku3 ¼ kd3 and we then get

~Uðx3Þ ¼ ~Rðx3Þ ~Dðx3Þ: (A-27)

APPENDIX B

AMPLITUDE CORRECTION FOR DIPPING LAYER

We consider an interface with dip angle α relative to the vertical
direction and azimuth angle θ in the direction of maximum dip. A
downgoing wave reflected at the interface has an incoming angle equal
to ϕ, measured relative to the surface normal of the interface. Under an
isotropic assumption, due to Snell’s law, the outgoing angle is also
equal to ϕ. By simple geometry, the incoming and outgoing angles
θu and θd measured relative to the vertical direction is given by

θu ¼ ϕþ α; θd ¼ ϕ − α: (B-1)

The vertical slowness p3 is given by

pd
3 ¼ cosðϕ − αÞ∕c; pu

3 ¼ cosðϕþ αÞ∕c; (B-2)

which gives the impedances Zd and Zu

Zd ¼ ρc∕ cosðϕ − αÞ Zu ¼ ρc∕ cosðϕþ αÞ: (B-3)

From equation A-15, we have for the reflection coefficient for pres-
sure-normalized waves

Rðx3Þ ¼
2 cosðϕþ αÞ

cosðϕ − αÞ þ cosðϕþ αÞ rðx3Þ; (B-4)

and for the flux-normalized case we have, similarly, from
equation A-25

~Rðx3Þ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðϕþ αÞ cosðϕ − αÞp

cosðϕ − αÞ þ cosðϕþ αÞ rðx3Þ: (B-5)

From equations B-4 and B-5, it is clear that the plane-wave reflection
coefficient for a plane layer can easily be obtained from equations B-4
and B-5.
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