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ABSTRACT

Separation of wavefields into directional components can
be accomplished by an eigenvalue decomposition of the
accompanying system matrix. In conventional pressure-
normalized wavefield decomposition, the resulting one-way
wave equations contain an interaction term which depends
on the reflectivity function. Applying directional wavefield
decomposition using flux-normalized eigenvalue decompo-
sition, and disregarding interaction between up- and down-
going wavefields, these interaction terms were absent. By
also applying a correction term for transmission loss, the
result was an improved estimate of the up- and downgoing
wavefields. In the wave equation angle transform, a
crosscorrelation function in local offset coordinates was
Fourier-transformed to produce an estimate of reflectivity
as a function of slowness or angle. We normalized this wave
equation angle transform with an estimate of the plane-
wave reflection coefficient. The flux-normalized one-
way wave-propagation scheme was applied to imaging
and to the normalized wave equation angle-transform on
synthetic and field data; this proved the effectiveness of
the new methods.

INTRODUCTION

Accurate wavefield traveltimes and amplitudes can be described
using two-way wave equation techniques like finite-difference or
finite-element methods. However, these methods can often be sig-
nificantly more computationally expensive compared to one-way
methods. The computational cost in modeling wavefield extrapola-
tion using full wave equation methods can become a limitation for
3D applications in particular. Ray methods based upon asymptotic
theory provide effective alternatives to full wave equation methods;

however, their high-frequency approximations restrict their use in
complex subsurface velocity. One-way wavefield methods based
upon a paraxial approximation of the wave equation provide a ro-
bust and computationally cheap alternative approach for solving the
wave equation. With wavefield propagators based on one-way
methods, we can substantially increase the speed of computations
compared to full wavefield methods. Representation of a wavefield
using the one-way wave equation permits separation of the wave-
field into up- and downgoing constituents. This separation is not
valid for near-horizontal propagating waves. Schemes for splitting
the wave equation into up- and downgoing parts and seismic map-
ping of reflectors are discussed by Claerbout (1970, 1971).
Several authors have investigated various methods for amplitude

correction to one-way wave equations. Zhang et al. (2003, 2005,
2007) address true-amplitude implementation of one-way wave
equations in common-shot migration by modifying the one-way
wave equation. This is accomplished by introducing an auxiliary
function that corrects the leading order transport equation for the
full wave equation. Ray theory applied to the modified one-way
wave equations yields up- and downgoing eikonal equations with
amplitudes satisfying the transport equation. Full waveform solu-
tions substituted with corresponding ray-theoretical approximations
provides true-amplitude in the sense that the imaging formulas
reduce to a Kirchhoff common-shot inversion expression.
Kiyashchenko et al. (2005) develop improved estimation of

amplitudes using a multi-one-way approach. It is developed from
an iterative solution of the factorized two-way wave equation with
a right side incorporating the medium heterogeneities. It allows for
vertical and horizontal velocity variations and it is demonstrated
that the multi-one-way scheme reduces errors in amplitude esti-
mates compared to conventional one-way propagators.
Cao andWu (2008) reformulate the solution of the one-way wave

equation in smoothly varying 1D media based on energy-flux con-
servations. By introducing transparent boundary conditions and
transparent propagators, their formulation is extended to a general
heterogeneous media in the local angle domain utilizing beamlet
methods.
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By decomposing the wavefield into up- and downgoing waves
with an eigenvalue decomposition using symmetry properties of
the accompanying system matrix, one can derive simplified equa-
tions for computing the wavefield propagators. This directional de-
composition is consistent with a flux-normalization of the wavefield
(Ursin, 1983). Further, by neglecting coupling terms between the
up- and downgoing waves, the resulting system matrix can be
used as a starting point to derive paraxial approximations of the
original wave equation. They also can be used to derive WKBJ
approximations of various orders (Bremmer, 1951; van Stralen
et al., 1998).
In this paper, we derive initial conditions and one-way propaga-

tors for flux-normalized wavefield extrapolation in 1D media
and show how this provides accurate amplitude information. We
formulate an unbiased estimate of the reflectivity using the wave
equation angle transform. Further, we propose an extension to a
general heterogeneous media in which the flux-normalization
and an approximation to the transmission loss are performed.
We account for the medium perturbations in the downward propa-
gation using Fourier finite-difference methods (Ristow and
Rühl, 1994).
We apply conventional pressure-normalized and the derived

flux-normalized wavefield decomposition and propagation to a field
data example from offshore Norway. Using this example, we
compare and quantify the estimated reflectivity differences.

LATERALLY HOMOGENEOUS MEDIUM

We consider acoustic waves traveling in a 3D medium where the
principal direction of propagation is taken along the x3 axis (or
“depth”), and the transverse axes are ðx1; x2Þ. The acoustic medium
parameters are assumed to be functions of depth x3 only. Let c de-
note the wave-propagation velocity; v ¼ ðv1; v2; v3Þ the particle ve-
locity vector; p the pressure; and ρ the density of the medium. With
no external volume force acting on the medium, the acoustic wave-
field satisfies the constitutive relation for fluids (Pierce, 1981)

−∇p ¼ ρ∂tv; (1)

and the equation of motion given by

1

c2
∂tpþ ρ∇ · v ¼ 0; (2)

where ∇ ¼ ð∂1; ∂2; ∂3Þ and ∂t denote the partial derivative with
respect to time t.
We define the Fourier transform with respect to time t and the

transverse spatial directions ðx1; x2Þ as

Pðω; k1; k2; x3Þ ¼ZZZ
∞

−∞
pðt; x1; x2; x3Þeiðωt−k1x1−k2x2Þdx1dx2dt; (3)

with the inverse transform with respect to circular frequency ω and
the transverse wavenumbers ðk1; k2Þ as

pðt; x1; x2; x3Þ ¼
1

ð2πÞ3
ZZZ

∞

−∞
Pðω; k1; k2; x3Þeið−ωtþk1x1þk2x2Þdk1dk2dω: (4)

The vertical wavenumber k3 is

k3 ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω
c

�
2

− ðk21 þ k22Þ
s

; if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
≤
���� ωc
����

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 −

�
ω
c

�
2

s
; if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
>

���� ωc
����
: (5)

We consider a plane wave with wavenumber k ¼ ðk1; k2; k3ÞT
and directionm ¼ ðsin θ cos ϕ; sin θ sin ϕ; cos θÞT where θ is the
dip angle and ϕ is the azimuth. We have

k ¼ mω

c
¼ ωp; (6)

where p is the slowness vector. In our further development, it is
convenient to introduce the impedance Z:

Z ¼ ρω

k3
¼ ρ

p3

¼ ρc
cos θ

: (7)

Applying the Fourier transform to equations 1 and 2, the resulting
reduced linear acoustic system of equations in a horizontally homo-
geneous fluid yield the matrix differential equation

∂3b ¼ iωAb; (8)

where the system matrix A is given by

A ¼
"

0 ρ

1
ρ

�
1
c2 −

k2
1
þk2

2

ω2

�
0

#
; (9)

and the field vector b by

b ¼
�
P
V3

�
; (10)

where P is the Fourier transformation of p and V3 is the Fourier
transformation of v3 with respect to t, x1 and x2.
The measured field vector b ¼ ½P;V3�T can be separated into

up- and downgoing waves, denoted U and D, respectively. This se-
paration is accomplished by applying an inverse eigenvector
matrix of A, denoted L−1, on b. We define the transformed field
vector containing the directional decomposed wavefield by

w ¼
�
U
D

�
¼ L−1b: (11)

Moreover, upon substitution of w, the matrix differential equation 8
transforms to
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∂3w ¼ ðiωΛ − L−1∂3LÞw; (12)

where an eigenvalue decomposition of A provides the diagonal ei-
genvalue matrix

Λ ¼ L−1AL ¼
�
−p3 0

0 p3

�
; (13)

where p3 is the vertical slowness.

Amplitude-normalized wavefields

In the conventional pressure-normalized wavefield separation
approach, the eigenvector matrix of A is chosen as (Claerbout,
1976; Ursin, 1984, 1987)

L ¼
�

1 1

− 1
Z

1
Z

�
: (14)

This leads to the inverse eigenvector matrix

L−1 ¼ 1

2

�
1 −Z
1 Z

�
: (15)

With the eigenvector matrix defined in equation 14, the matrix dif-
ferential equation 12 becomes

∂3w ¼ iω

�
−p3 0

0 p3

�
w − γðx3Þ

�
−1 1

1 −1

�
w; (16)

where

γðx3Þ ¼
1

2
∂3 log Zðx3Þ (17)

is the reflectivity function. Using equation 7 it can be expressed as

γðx3Þ ¼
1

2

�
1

ρ

∂ρ
∂x3

þ 1

cos2 θ

1

c
∂c
∂x3

�
: (18)

The wavefield decomposition described in equation 16 is referred
to as being pressure-normalized in the sense that the pressure field
equals the sum of the up- and downgoing wavefields.
We consider a stack of inhomogeneous layers where ρ and c are

continuous functions of x3 within each layer. At an interface
between two layers, the boundary condition requires that the wave
vector b shall be continuous. For an interface at x3 ¼ x3k we must
have Lþwþ ¼ L−w− where L− ¼ Lðx3k− Þ is evaluated above the
interface, and Lþ ¼ Lðx3kþÞ is evaluated beneath the interface
(the x3-axis is pointing vertically downward). We therefore have

wþ ¼ L−1þ L−w−: (19)

Equations 14 and 15 give

L−1þ L− ¼ 1

2

"
1þ Zþ

Z−
1 − Zþ

Z−

1 − Zþ
Z−

1þ Zþ
Z−

#
: (20)

This can be written as (Ursin, 1983, equation 33):

L−1þ L− ¼
�

T−1
u RuT−1

u

RuT−1
u T−1

u

�
; (21)

where Tu and Ru are the transmission and reflection coefficients for
an upward traveling incident wave at the interface.

Flux-normalized wavefields

We now derive an alternative directional decomposition by a
flux-normalization of the wavefield. The main advantage of flux-
normalizing the wavefield is that we obtain a simpler expression
of the corresponding directional decomposed matrix differential
equation, as compared to the pressure-normalized approach. Disre-
garding the interaction between directional components yields a
matrix differential equation independent of the reflectivity function.
In order obtain a flux-normalized system of equations, the eigen-

vector matrix of A is chosen as (Ursin, 1983; Wapenaar, 1998)

L̃ ¼ 1ffiffiffi
2

p
" ffiffiffiffi

Z
p ffiffiffiffi

Z
p

− 1ffiffiffi
Z

p 1ffiffiffi
Z

p

#
; (22)

and thus the inverse eigenvector matrix becomes

L̃−1 ¼ 1ffiffiffi
2

p
"

1ffiffiffi
Z

p −
ffiffiffiffi
Z

p
1ffiffiffi
Z

p
ffiffiffiffi
Z

p
#
: (23)

This provides a flux-normalized representation of the wavefield

w̃ ¼ L̃−1b; (24)

where w̃ ¼ ðŨ; D̃ÞT , and where Ũ and D̃ denote the flux-
normalized directional components of the wavefield. The wavefield
is referred to as flux-normalized in the sense that the energy flux in
the x3-direction is propagation invariant (Ursin, 1983; Wapenaar,
1998). The pressure-normalized and the flux-normalized decompo-
sition break down for near-horizontally-traveling waves because the
lateral wavenumber k3 approaches to zero in the horizontal
direction.
Combining equations 22 and 24 with equation 12 yields the

transformed matrix differential equation

∂3w̃ ¼ iω

�
−p3 0

0 p3

�
w̃ − γðx3Þ

�
0 1

1 0

�
w̃: (25)

Comparing the flux-normalized system of equations in equation 25
with the conventional pressure-normalized system of equations in
equation 16, we see that in equation 25 only the off-diagonal terms
(depending on the reflectivity function γðx3Þ) are present. Further,
by neglecting interaction between the flux-normalized directional
decomposed components, the flux-normalized matrix differential
equation becomes independent of the reflectivity function γðx3Þ.
Finally, we note that
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w̃ðω; k1; k2; x3Þ ¼
ffiffiffiffi
2

Z

r
wðω; k1; k2; x3Þ

¼
ffiffiffiffiffiffiffi
2k3
ρω

s
wðω; k1; k2; x3Þ: (26)

At an interface between two smoothly varying media we have
w̃þ ¼ L̃−1þ L̃−w̃− with

L̃−1þ L̃− ¼
�

T̃−1
u RuT̃

−1
u

RuT̃
−1
u T̃−1

u

�
(27)

Here,

T̃−1
u ¼

ffiffiffiffiffiffi
Z−

Zþ

s
T−1
u ¼ Zþ þ Z−

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p ¼ 1

2

8<
:

ffiffiffiffiffiffi
Zþ
Z−

s
þ

ffiffiffiffiffiffi
Z−

Zþ

s 9=
;;

(28)

and

RuT̃−1
u ¼ Z− − Zþ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ZþZ−

p ¼ 1

2

8<
:

ffiffiffiffiffiffi
Z−

Zþ

s
−

ffiffiffiffiffiffi
Zþ
Z−

s 9=
;; (29)

where Z− denotes the impedance at the bottom of the previous thin
layer and Zþ denotes the impedance at the top of the next layer.
Zhang et al. (2005) use the scaling w̃ ¼ ffiffiffiffiffi

k3
p

w so they are not
using flux-normalized variables. With their scaling, the transformed
matrix differential equation will only have the same form as equa-
tion 25 for a medium with constant density.

ONE-WAY WAVE EQUATIONS

We obtain one-way equations for the up- and downgoing waves
by neglecting the interaction terms in equations 16 and 21. This
gives the zero-order WKBJ approximation (Clayton and Stolt,
1981; Ursin, 1984) obeying the equations

∂
∂x3

�
U
D

�
¼

�
−ik3 þ γ 0

0 ik3 þ γ

��
U
D

�
(30)

with interface conditions

�
U
D

�
þ
¼ T−1

u

�
U
D

�
−
: (31)

In a region with smoothly-varying parameters, the equation

∂D
∂x3

¼ ðik3 þ γÞD (32)

with Dðx30 Þ given, has the solution

Dðx3Þ ¼ Dðx30Þ exp
�Z

x3

x30

ðik3ðζÞ þ γðζÞÞdζ
�

¼ Dðx30Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðx3Þ
Zðx30Þ

s
exp

�Z
x3

x30

ðik3ðζÞÞdζ
�
: (33)

The solution to equations 30 and 31 in the zero-order WKB ap-
proximation becomes

Dðx3Þ ¼ Dðx30ÞTðx3Þ exp
�
i
Z

x3

x30

k3ðζÞdζ
�

(34)

and

Uðx3Þ ¼ Uðx30ÞTðx3Þ exp
�
−i

Z
x3

x30

k3ðζÞdζ
�
: (35)

The factor

Tðx3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðx3Þ
Zðx30Þ

s Y
0<x3k<x3

T−1
u ðx3kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðx3k−Þ
Zðx3kþÞ

s
(36)

comes from using equations 31 and 33 for each layer, starting at the
top. Passing from one layer to the next, the factor T−1

u ðx3kÞ takes the
boundary conditions partly into account (equation 31). The square-
root factors come from integrating equation 32 inside each layer
using equation 33. This givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zðx31−Þ
Zðx30Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðx32−Þ
Zðx31þÞ

s
· · ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðx3Þ
Zðx3NþÞ

s
: (37)

By combining the square roots for each interface from 1 to N we
obtain equation 36.
Using equation 28 this can be written as:

Tðx3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðx3Þ
Zðx30Þ

s Y
0<x3k<x3

T̃−1
u ðx3kÞ (38)

in terms of the flux-normalized transmission coefficients.
For the flux-normalized up- and downgoing waves we obtain

from equations 34, 35, and 38 using equation 26:

D̃ðx3Þ ¼ D̃ðx30Þ
Y

0<x3k<x3

T̃−1
u ðx3kÞ exp

�
i
Z

x3

x30

k3ðζÞdζ
�

(39)

and

Ũðx3Þ ¼ Ũðx30Þ
Y

0<x3k<x3

T̃−1
u ðx3kÞ exp

�
−i

Z
x3

x30

k3ðζÞdζ
�
:

(40)

These equations could, of course, also have been obtained directly
by neglecting the interaction terms in equations 25 and 27.

S86 Ursin et al.

D
ow

nl
oa

de
d 

04
/1

3/
14

 to
 1

29
.2

41
.2

21
.2

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



HETEROGENEOUS MEDIUM

We want to use one-way wave propagators for migration in a
heterogeneous medium. Based on the previous discussion, we
choose to use flux-normalized variables. The downgoing field from
a point source is then represented in the wavenumber-frequency do-
main by

D0 ¼ D0ðω; k1; k2; x3 ¼ 0Þ ¼ −
2πSðωÞ
ik3

: (41)

The inverse Fourier transform of equation 41 with respect to k1 and
k2 is known as the Weyl integral (Aki and Richards, 1980). The
Fourier transform of the effective source signature is SðωÞ.
The flux-normalized downgoing field from a point source is re-

presented in the wavenumber domain by

D̃0ðω; k1; k2; x3 ¼ 0Þ ¼ 2πi

ffiffiffiffiffiffiffiffiffiffiffi
2

ρωk3

s
SðωÞ: (42)

In marine seismic data, we may add the effect of the free surface (the
ghost) on the downgoing wavefield (Amundsen and Ursin, 1991):

D̃0ðω; k1; k2; 0Þ ¼ 2πi

ffiffiffiffiffiffiffiffiffiffiffi
2

ρωk3

s

× ðexp ½−ik3xs3� − R0 exp ½ik3xs3�ÞSðωÞ; (43)

where xs3 is the source depth, and the reflection coefficient is
theoretically R0 ¼ 1.
If the wavefield is acquired by a conventional streamer config-

uration, only pressure is recorded. The primary upgoing wavefield
U0 can then be estimated by a demultiple procedure (Amundsen,
2001; Robertsson and Kragh, 2002), where ghost and free-surface
multiples are removed from the data. Hence, using equation 26, the
flux-normalized upgoing wavefield can be represented by

Ũ0 ¼
ffiffiffiffi
2

Z

r
U0: (44)

The pressure and the vertical displacement velocity can be mea-
sured in ocean-bottom seismic acquisition. A recent development
(Landrø and Amundsen, 2007; Tenghamn et al., 2008) also allows
for both these to be measured on a streamer configuration. The flux-
normalized upgoing wavefield is then given by

Ũ0 ¼
1ffiffiffiffiffiffi
2Z

p ½P − ZV3�: (45)

The downward continuation of the wavefields is accomplished by
solving the equation

∂w̃
∂x3

¼
�
−iĤ1 0

0 iĤ1

�
w̃ (46)

for x3 > 0 with w̃ð0Þ ¼ ½Ũ0; D̃0�T given in equations 43–45. Equa-
tion 46 is a generalization of equation 25 with the coupling terms
neglected. The operator Ĥ1 is the square-root operator satisfying
(Wapenaar, 1998)

Ĥ1Ĥ1 ¼
�
ω

c

�
2

þ ρ
∂
∂x1

�
1

ρ

∂
∂x1

·

�
þ ρ

∂
∂x2

�
1

ρ

∂
∂x2

·

�
:

(47)

Dividing the medium into thin slabs of thickness Δx3 with
negligible variations in the preferred direction x3 of propagation
within each slab, allows us to extend the propagator to a general
inhomogeneous medium with small lateral medium variations
using, for example, split-step (Stoffa et al., 1990), Fourier finite dif-
ference (Ristow and Rühl, 1994), or a phase-screen (Wu and Huang,
1992) approach depending on the size of the medium heterogene-
ities in the lateral direction (Zhang et al., 2009).
At thin-slab boundaries one may apply a correction term for the

transmission loss (see equation 27):

T̃−1
u ¼ 1

2

� ffiffiffiffiffiffi
Zþ
Z−

s
þ

ffiffiffiffiffiffi
Z−

Zþ

s �
: (48)

Cao and Wu (2006) have proposed a similar correction for the
downward continuation of pressure.
The downward-continued wavefields can be used in a standard

way to create an image. One may also apply a crosscorrelation and a
local Fourier transform to compute common-angle gathers (de
Bruin et al., 1990; Sava and Fomel, 2003; de Hoop et al., 2006;
Sun and Zhang, 2009). This is termed the wave equation angle
transform, and a common-image gather for a single shot is

Iðp; x; x3Þ ¼
ZZ

Ũ

�
ω; xþ h

2
; x3

�
D̃�

�
ω; x −

h
2
; x3

�
e−iωp·hdhdω;

(49)

where h ¼ ðh1; h2; 0Þ is the horizontal-offset coordinate and
p · h ¼ p1h1 þ p2h2. In the Appendix, it is shown that this ap-
proach produces an estimate of the plane-wave reflection coefficient
for a horizontal reflector, multiplied by the energy of the corre-
sponding downgoing plane wave. To obtain an unbiased estimate
of the reflection coefficient, it is necessary to divide by this factor
(which we will refer to as the source correction term). The result is

Rðp; x; x3Þ ¼
RR
Ũ

�
ω; xþ h

2
; x3

�
D̃�

�
ω; x − h

2
; x3

�
e−iωp·hdhdωR jD̂ðω;ωp; x; x3Þj2dω

;

(50)

where D̂ðω;ωp; x; x3Þ is the local Fourier transform as defined in
the Appendix. It may be necessary to apply a stabilizing procedure
as discussed in Vivas et al. (2009). To obtain an estimate of the
reflection coefficient for a range of p-values it is necessary to aver-
age the expression in equation 50 over many shots.

NUMERICAL RESULTS

Throughout our numerical examples, we employ a Fourier
finite-difference approach to account for lateral medium variations,
while correcting for the transmission loss using the minimum ve-
locity within each thin-slab. Further, we consider wave-propagation
in a 2D medium. First, the input data to migration are modeled
over a medium with density contrasts only; hence, the reflection
coefficients are independent of angle. Next, we compare conven-
tional pressure normalization to the flux-normalized approach on
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a field data example where we, in a quantitative fashion, compare
the estimated reflectivity. For the pressure-normalized approach, we
set the transmission correction to unity. Equation 50 is used to
output AVP gathers on selected locations.

Imaging in a lateral invariant medium

In our first test, we consider a laterally-invariant medium with a
constant velocity of 2000 m∕s and with density contrasts in depth at
1, 2, and 3 km as illustrated in Figure 1. We choose this model be-
cause in this particular case we will have angle-independent reflec-
tion coefficients. We create a synthetic split-spread shot gather over
the laterally invariant medium using a finite-difference modeling
scheme. In Figure 2 we show the modeled shot, and the migrated
shot is shown in Figure 3.
To extract AVP or AVA information at a reflector position, we

need information from more than one shot because each shot gives
limited angle information. A schematic representation of angle
information available from one shot is shown in Figure 4. Using
information from the wave equation angle-transform, this can

further be illustrated by plotting Iðp; xÞ (in gray-scale) overlaid
the source correction term (in color-scale) at midpoints xm;1 ¼
−0.5 km, xm;2 ¼ 0.0 km, and xm;3 ¼ 0.5 km shown in Figure 5.
By simulating more shots over one midpoint location xm, we can

extract angle information for larger angle coverage as shown sche-
matically in Figure 6. We simulate 100 shots with a shot-distance of
10 m on both sides of xm, in addition to one shot just above xm. This
produces the angle coverage shown in Figure 7, where we plot
Iðp; xÞ overlaid the corresponding source illumination for the fixed
midpoint location xm. We notice that the angle coverage for each
reflector in depth is different (as expected).
At each reflector depth, we extract the peak amplitude of

Rðθ; xmÞ using equation 50 with sin θ ¼ pc. The result is depicted
in Figure 8. We have plotted the AVA response for the reflector at
1 km up to 50°, the reflector at 2 km up to 35°, and the reflector at
3 km up to 25°. In this example, we expect an angle-independent
reflectivity, and from the result we see that the reflectivity is recov-
ered relatively accurately for a wide range of angles. Due to a lim-
ited aperture, edge effects impact the results, and the largest angles
on each reflector are affected.
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Figure 1. Densities used in the finite-difference modelling over the
lateral invariant model example.
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Figure 2. A synthetic shot gather from a finite-difference modeling
over the lateral invariant model example.
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Figure 3. Migrated shot from the lateral invariant model with flux-
normalized wavefields.
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Figure 4. Schematic representation of angle information contained
in one shot, where xm;1 and xm;2 are midpoint locations with infor-
mation around angles θ1 and θ2. For each midpoint location, each
shot only gives limited angle information.
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Marine seismic data example

We apply conventional pressure-normalized and the derived flux-
normalized methods to a field data set from the Nordkapp Basin.
The basin is located offshore Finnmark, in the Norwegian sector
of the Barents Sea. It is an exploration area which exhibits complex
geology and is challenging for seismic imaging. We have extracted
a subset of a 2D survey which partially covers two salt dome struc-
tures. Figure 9 shows the velocity model used in the migration.
The data set is composed by collecting and combining streamer

data in two directions, providing a split-spread configuration. Each
shot is separated by 25.0 m, and in our example we have included a
total of 775 shots. Each streamer has 1296 receivers with a hydro-
phone distance of 12.5 m and a total offset of about 8100 m on both
sides of the source location. Notice that no demultiple is applied in
the preprocessing step. In Figure 10, we show one extracted shot
which is input to migration.
In the imaging, we have used a source signature comparable to a

Ricker wavelet with a peak frequency of 17 Hz. We used 3–35 Hz of
the frequency content of the data, and imaged the data down to
10 km. The total aperture of each shot was 16 km. For the pres-
sure-normalized and the flux-normalized wavefield decomposition,
we migrate the data set with the same downward continuation
scheme and the same imaging condition. That is, we use a third-
order Fourier finite-difference migration operator and an imaging
condition which estimates the reflectivity by accounting for the
source illumination. The flux-normalized migration has an approx-
imation to the transmission loss correction applied at thin-slab
boundaries using the minimum velocity at each slab given by
the aperture of each migrated shot. In Figures 11 and 12, the pres-
sure-normalized and the flux-normalized migrated sections are
shown, respectively. By inspecting and comparing both sections,
we see that we have an apparent similar amplitude response.
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Figure 6. Schematic representation of angle coverage θ at one mid-
point location xm from a range of shots. To extract a larger range of
angle coverage, each midpoint location requires several shots.
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Figure 7. Angle coverage Iðp; xÞ (gray-scale) from one spatial lo-
cation xm, overlaid the corresponding source correction (color-
scale), where the contribution from multiple shots are included.
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Figure 8. Peak amplitudes at each reflector at 1 km (red), 2 km
(green), and 3 km (blue) for one spatial location xm.
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Figure 9. The velocity model used in the Nordkapp field data ex-
ample.
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Figure 5. Slowness coverage Iðp; xÞ from one shot (gray-scale)
overlaid the corresponding source correction (color-scale) for
(left) xm;1 ¼ −0.5 km; (middle) xm;2 ¼ 0.0 km; and (right)
xm;3 ¼ 0.5 km.
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To quantify the difference between the migrated sections, we
compute the difference between the absolute values of each section.
The difference plot is shown in Figure 13. The colors red or black
indicate that the flux-normalized image provides higher or lower
amplitudes than the pressure-normalized image, respectively. In
the shallower part of the difference image, from the surface to about

2 km, the pressure-normalized image appears to be dominating;
however, these parts of the sections are also contaminated by
low-frequency-migration noise. In the sediment basin between
the two salt-domes, that is, below and around a distance of
6 km, no coherent energy appears below 2 km. Around a distance
of approximately 14 to 16 km, at about 8 km depth, the flux-normal-
ized images gives a higher amplitude response on some parts of a
few subsurface reflectors. The peak amplitude difference is around
one-tenth of the reflectivity image amplitudes.
Further, we extract a slowness gather from each of the migration

approaches corresponding to a lateral position of 14.4 km and these
are shown in Figure 14. Figure 14a and 14b shows the output from
the pressure-normalized and flux-normalized approach, respec-
tively. The gathers look similar. Next, we extract one event at
7.8 km of depth on these gathers, as shown in Figure 15. For this
event, we extract the peak amplitudes for each of the migrated re-
flectors, and plot these in Figure 16 (top), where the red curve is the
flux-normalized peak amplitude and the blue curve is the pressure-
normalized peak amplitude. Finally, we take the difference between
the normalized peak amplitudes (bottom), where the positive and
negative values correspond to higher and lower peak amplitudes
when using flux-normalized variables. The plot shows differences
between the results from the different approaches, and explains the
difference plot in Figure 13.
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Figure 10. One extracted shot gather used in the Nordkapp basin
field data example.
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Figure 11. Migrated image of the Nordkapp field
example with the pressure-normalized wavefield
decomposition and migration approach.
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Figure 12. Migrated image of the Nordkapp field
example with the flux-normalized wavefield de-
composition and migration approach.
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CONCLUSIONS

By directionally decomposing a wavefield using a flux-normalized
eigenvalue decomposition, we have derived initial conditions for pre-
stack depth migration of common-shot data. This decomposition sim-
plifies the system of differential equations. Further, by neglecting
interaction between directional components, we derive propagators
for flux-normalized wavefields where we formulate a transmission-
loss compensation approach for flux-normalized wavefield propaga-
tion. By using the wave equation angle transform, we formulate an
estimateof theplane-wave reflection coefficient for a horizontal reflec-
tor. From our 1D numerical example, we show that a flux-normalized
directional decomposition provides accurate amplitude information in
amediumwhere the parameters are function of depth only. Finally, we
extend our approach to a laterally varying media. From a field data
example, we observe some differences in the strength of the estimated
reflectivity compared to a pressure-normalized approach.
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APPENDIX A

THE WAVE EQUATION ANGLE TRANSFORM

In terms of local Fourier transforms,

Ûðω; kr; x; x3Þ ¼
ZZ

Ũ

�
ω; xþ h

2
; x3

�
e−ik

r ·h∕2dh (A-1)

and

D̂ðω; ks; x; x3Þ ¼
ZZ

D̃

�
ω; x −

h
2
; x3

�
eik

s·h∕2dh; (A-2)

the wave equation angle-transform in equation can be written

Iðp; x; x3Þ ¼
�

1

2π

�
4

⨌ Ûðω; kr; x; x3ÞD̂�ðω; ks; x; x3Þ

eik
r·h∕2eik

s·h∕2e−iωp·hdkrdksdhdω (A-3)

where kr ¼ ðkr1; kr2Þ and ks ¼ ðks1; ks2Þ. Snell’s law is

Ûðω; kr; x; x3Þ ¼ Rðp; x; x3ÞD̂ðω; ks; x; x3Þδðkr − ksÞ:
(A-4)

Inserted into equation A-3 this gives

Iðp; x; x3Þ ¼
�

1

2π

�
2
ZZZ

Rðp; x; x3ÞjD̂ðω; k; x; x3Þj2

eiðk−ωpÞ·hdkdhdω (A-5)

where kr ¼ ks ¼ k ¼ ωp. Further simplifications give

Iðp; x; x3Þ ¼
�

1

2π

�
2
ZZ

Rðp; x; x3ÞjD̂ðω; k; x; x3Þj2

δðk − ωpÞdkdω (A-6)

and finally

Iðp; x; x3Þ ¼ Rðp; x; x3Þ
Z

jD̂ðω;ωp; x; x3Þj2dω (A-7)

The derivations above are only approximate, because finite-aperture
effects have not been taken into consideration. The result is valid
only for a horizontally reflecting plane.
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