AGENDA – ROSE meeting 22-25th April 2013

Location: P1 in PTS1, S.P. Andersens veg 15, Trondheim.

Monday 22nd April

- 09:30 Coffee and registration
- 09:50 Welcome

Session 1: Rock physics

- 10:00 Joint elastic-electrical properties of reservoir rocks, Angus Best, NERC
- 10:30 Similarities and differences between static and dynamic moduli; *Rune M Holt, NTNU/ SINTEF*
- 10:50 Elastic dispersion derived from a combination of static and dynamic measurements; Erling Fjær, SINTEF / NTNU
- 11:10 Thomsen anisotropy parameters for unconsolidated sands under stress; *Mohammad Hossain Bhuiyan*, *NTNU*
- 11:30 Identifying sweet spots for CO₂ injection from rock physics, Sissel Grude, NTNU
- 11:50 Extended elastic impedance from a rock physics point of view a Norwegian Sea demonstration, *Per Avseth, NTNU/Tullow Oil Norge*

12:10 LUNCH

- 13:00 Seismic characterization of shale reservoirs, De-hua Han, University of Houston
- 13:20 Temperature effects on wave velocities and compaction of shales, *Andreas Bauer, SINTEF/NTNU*
- 13:40 Dynamic Fluid Modulus to characterize heterogeneity of porous rock, *Quliang Yao*, *University of Houston*

Session 2: Modeling and Anisotropy

- 14:00 First-order ray tracing for P and S waves in inhomogeneous, weakly anisotropic media, *Ivan Psencik, Academy of Sciences of the Czech Republic*
- 14:20 Modeling of transmitted and reflected waves in layered media, *Anastasiya Tantsereva*, *NTNU*
- 14:40 Double-diffraction approximation of the feasible Green's function in geometrical shadow zones, *Alena Ayzenberg, NTNU*

15:00 Coffee break

- 15:20 The offset-midpoint pyramide in TTI media, Qi Hao, NTNU
- 15:40 Upscaling in high-contrast media with application on TTI, Alexey Stovas, NTNU

Session 3: Time lapse and reservoir characterization

- 16:00 Ice scours as trapping mechanism for shallow gas, *Kjetil Haavik, NTNU*
- 16:20 Combining a simplified flow equation and 4D seismic traveltime shifts for pressure and saturation predictions, *Sandra Witsker*, *NTNU*
- 16:40 Dynamic time warping an improved method for time shift estimation?, *Jon Marius Venstad*, *NTNU*

19:00 Dinner, Palmehaven, hotel Britannia, Dronningens gt. 5

Tuesday 23rd April

- 09:00 4D time lapse in complex media: a fast track approach, Pierre Thore, Total
- 09:20 Bayesian inversion methods for reservoir properties estimation from seismic data Dario Grana, Stanford University
- 09:40 Discrimination between pressure and fluid saturation changes in compacting reservoirs using time-lapse amplitudes and travel time information, *Tuhin Bhakta*, *NTNU*

10:00 Coffee break

- 10:30 Time lapse refraction analysis status and future applications, Martin Landrø, NTNU
- 10:50 Temperature and pressure measurements in CO2 wells, Anders Kiær, NTNU
- 11:10 Sensitivity analysis of 4D full waveform inversion, Hadi Balhareth, NTNU
- 11:30 Influence of frequency and saturation on AVO attributes in partially saturated rocks, *Bastien Dupuy, NTNU*
- 12:00 LUNCH

Session 4: Imaging and inversion

- 13:00 Combined Full waveform inversion and wave tomography, Børge Arntsen, NTNU
- 13:20 Seismic interferometry and beyond, Kees Wapenaar, TUDelft
- 13:40 Seismic waves acquired on a frozen surface, Tor Arne Johansen, University of Bergen
- 14:00 Coffee break
- 14:30 Role of illumination in the context of seismic while drilling, Yi Liu, NTNU
- 14:50 Reverse-time demigration using the extended imaging condition, *Wiktor Waldemar Weibull, NTNU*
- 15:10 Elastic time-lapse full waveform inversion, Espen Raknes, NTNU
- 15:30 3D magnetotelluric inversion, Lutz Mutschard, NTNU
- 15:50 Signal and travel-time parameter estimation using signal-to-noise energy ratio, *Bjørn Ursin*, *NTNU*
- 15:50 Discussion and adjourn

24th -25th April: Course on seismic acquisition, P1, 8:30 Martin Landrø, Lasse Amundsen and Thomas Elboth. (course description on next page). Course ends at 17:00 25th April

MARINE SEISMIC ACQUISITION COURSE ROSE consortium meeting Lectures: Martin Landrø, Lasse Amundsen and Thomas Elboth; 2 lecture days: 24-25th April 2013, aud. P1, S.P. Andersens veg 15A

DAY 1:				
Module 1	The marine seismic source (Martin Landrø)			
	• Air gun arrays, air gun modeling, clusters			
	• The source signature and how to estimate it			
	• Why is it so difficult to generate very low frequencies?			
	• Multiple source depths			
Module 2	Deghosting (Lasse Amundsen)			
	• Formulas for pressure and particle velocities in the water column			
	• Ghosts and their effect on seismic resolution			
	• Wavefield separation and de-ghosting techniques (principles)			
Module 3	Marine receiver systems (Martin Landrø)			
	 Conventional streamers 			
	 4C seismic: Cables, nodes, fiber optics 			
	 Noise aspects: Ambient, weather, shot generated, vessel, interference 			
	++			
	• New trends and future perspective			
Module 4	Acquisition of time lapse seismic data (Martin Landrø)			
	• Repeatability, repeatability, repeatability, or simply knowing where and			
	when you measure the wave field?			
	• Permanent, OBN, OBC,			
DAY 2:				
Module 5	Broadband seismic (Martin Landrø, Lasse Amundsen)			
	• Why low frequencies are important			
	• Various techniques			
	o Examples			
Module 6	Environmental aspects (Martin Landrø, Lasse Amundsen)			
	• Marine life			
	 High frequency components 			
	 Attenuation of noise level in water column 			
Module 7	Attenuating various types of noise from marine seismic data (Thomas			
	Elboth)			
	 Swell noise, turbulence noise and environmental noise seen in streamer data 			
	 Using superhydrofobic materials in streamer design 			
	 Removing seismic interference noise 			

Daily time plan:

08:30	Lecture	13:15	Lecture
10:15	Coffee	15:00	Coffee
10:30	Lecture	15:15	Lecture
12:15	Lunch	16:30	End