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OIL-WATER SIMULATION - IMPES SOLUTION 
 
We have previously listed the multiphase flow equations for one-dimensional, horizontal flow in a layer of 
constant cross sectional area as consisting of a continuity equation for each fluid phase flowing: 
 

 −
∂
∂x

ρlul( ) = ∂
∂t

φρ l Sl( ), l = o,w,g , 

 
and corresponding Darcy equations for each phase: 
 

 ul = −
kkrl
µl

∂Pl
∂x
, l = o,w,g , 

 
where  
 
 Pcow = Po − Pw   
 
 Pcog = Pg − Po  
 
 Sl = 1

l= o,w, g
∑ . 

 
Considering the fluid phases of oil and water only, and substituting Darcy's equations and standard Black Oil 
fluid descriptions into the continuity equations, and including production/injection terms in the equations, will 
result in the following flow equations for the two phases: 
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where 
 
 Pw = Po − Pcow  
 
and 
 
 So + Sw = 1  
 
Relative permeabilities and capillary pressures are functions of water saturation, and formation volume factors, 
viscosities and porosity are functions of pressures.  
 
Fluid properties as they are defined in a standard Black Oil model have been reviewed previously. Before 
proceeding, we shall also review the relative permeabilities an capillary pressure relationships for oil-water 
systems. 
 
 
Review of oil-water relative permeabilities and capillary pressure 
 
Both drainage and imbibition curves may be required in simulation of oil-water system, depending on the process 
considered. Although most processes of interest involve displacement of oil by water, or imbibition, the reverse 
may take in parts of the reservoir due to geometrical effects, or due to changes in injection and production rates. 
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Also, the initial saturations present in the rock will normally be the result of a drainage process at the time of oil 
accumulation. Thus, for initialization of saturations, the drainage capillary pressure curve is required.  
 
Starting with the porous rock completely filled with water, and displacing by oil, the drainage relative 
permeability and capillary pressure curves will be defined:  

 

 
 
Reversing the process when all mobile water has been displaced, by injecting water to displace the oil, imbibition 
curves are defined: 
 

 
The above curves are typical ones for a completely water-wet system. For less water-wet systems, the capillary 
pressure curve will have a negative part at high water saturation. The shape of the curves will depend on rock and 
wetting characteristics. 
 
  
Discretization of flow equations 
 
We will use similar approximations for the two-phase equations as we did for one phase flow. 

 
Left side flow terms 
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where, using oil term and plus direction as example, oil transmissibility is defined as 
 

 Txoi+1/ 2 =
2λoi+1 2

Δxi
Δxi+1
ki+1

+
Δxi
ki

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 

 
and the oil mobility term is defined as 
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λo =
kro
µoBo

. 

 
The mobility term is now a function of saturation in addition to pressure. This will have significance for the 
evaluation of the term in discrete form. 
 
Upstream mobility term 
 
Because of the strong saturation dependencies of the two-phase mobility terms, the solution of the equations will 
be much more influenced by the evaluation of this term than in the case of one phase flow. Recalling the 
Buckley-Leverett solution to the problem of displacing oil by water in a one-dimensional system, we will use it 
to illustrate the effect of mobility on the saturation solution: 
 

 
Here, for negligible capillary pressure, the water will move through the porous medium as a discontinuous front 
as illustrated in the figure above.  In simulating this process, using a discrete grid block system, we will find that 
the results are very much dependent upon the way the mobility term is approximated. Two cases will be 
considered, using flow of oil between blocks i  and i + 1  as an example: 
 
 1) upstream selection  λoi+1/ 2 = λoi  
 
 2 )weighted average selection λoi+1/ 2 = Δxiλoi + Δxi+1λoi+1( ) / Δxi + Δxi+1( )  
 
The results of these two selections on the saturation profiles calculated by the simulator are illustrated on the next 
page. Of course, the deviation from the exact solution depends on the grid block sizes used. For the downstream 
selection, water saturation behind the front may even become negative for large blocks. For very small grid 
blocks, the differences between the solutions may become negligible. Since the same amount of water has been 
injected in the three cases, the areas under the three curves must be equal, and only the location of the fluid front 
has been shifted, as well as the magnitude of the water saturation at the fluid front. The physical explanation of 
the differences, and in particular for the case of the weighted average mobility selection, is that the flow rate of 
oil out of any grid block depends primarily on the relative permeability to oil in that grid block. In particular, for 
flow between blocks i  and i + 1 , the relative permeability of block i  will determine when the flow is to stop (i.e. 

when the block has reached residual oil saturation). If the mobility selection is the weighted average, the block i  
may actually have reached residual oil saturation, while the mobility of block i + 1  still is greater than zero. 
Therefore, flow out of block i  will not stop before the relative permeability of block i + 1  also has become zero. 
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Again, for small grid block sizes, the error involved may be small, but for blocks of practical sizes, it becomes a 
significant problem. 
 
  

 
 

Therefore, in reservoir simulation, upstream mobilities are normally used, and using the plus direction as 
example, for oil-water flow:  
upstream selection of mobility: 

 

 λoi+1/ 2 =
λoi+1 if Poi+1 ≥ Poi
λoi if Poi+1 < Poi

⎧ 
⎨ 
⎩ 

 

 

 λwi+1 / 2 =
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λwi if Pwi+1 < Pwi

⎧ 
⎨ 
⎩ 

 

 
 
Right side terms 
 
The right hand side of the oil equation may be expanded as follows: 
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Since the derivative part of the second term is identical to the right hand side of the one phase equation, we may 
write an approximation for this directly: 
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For the first term, we will replace oil saturation by water saturation, so that 
 

 
∂Sw
∂t

= −
∂So
∂t
.  

 
Then we may use a standard backward approximation of the time derivative, 
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The complete difference form of the right hand side of the oil equation may thus be written as: 
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and 
 

 Cswoi = −
φi

BoiΔti
. 

 
For the water equation, a similar expansion is carried: 



TPG4160 Reservoir Simulation 2018 
Lecture note 6 

 

Norwegian University of Science and Technology  Professor Jon Kleppe 
Department of Petroleum Engineering and Applied Geophysics 15.01.18 

page 5 of 12 

 

 
∂
∂t

φSw
Bw

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

φ
Bw

∂Sw
∂t

+ Sw
∂
∂t

φ
Bw

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

 
The second term in this expression may be expanded further, to yield: 
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Since capillary pressure is a function of water saturation only, we may write: 
 

 
∂Pcow
∂t

=
dPcow
dSw

∂Sw
∂t

. 

 
Using the one phase terms and standard difference approximations for the derivatives, the right side of the water 
equation becomes: 
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and 
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−

dPcow
dSw

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
i
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The discrete forms of the oil and water equations may now be written as:  
 

 
Txoi +1 2 Poi+1 − Poi( ) + Txoi−1 2 Poi−1 − Poi( ) − ′ q oi

= Cpooi Poi − Poi
t( ) + Cswoi Swi − Swi

t( ), i = 1, N
 

 

 
Txwi+1 2 Poi +1 − Poi( ) − Pcowi +1 − Pcowi( )[ ] + Txwi−1 2 Poi−1 − Poi( ) − Pcowi−1 − Pcowi( )[ ]− ′ q wi

= Cpowi Poi − Poi
t( ) + Cswwi Swi − Swi

t( ), i = 1,N
 

 
Complete definitions of the terms in the equations are given below: 
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where 

λo =
kro
µoBo

 

 
and the upstream mobilities are selected as: 
 

 λoi+1/ 2 =
λoi+1 if Poi+1 ≥ Poi
λoi if Poi+1 < Poi

⎧ 
⎨ 
⎩ 

 

 

 λoi−1/ 2 =
λoi−1 if Poi−1 ≥ Poi
λoi if Poi−1 < Poi

⎧ 
⎨ 
⎩ 

 

 

 λwi+1 / 2 =
λwi+1 if Pwi+1 ≥ Pwi

λwi if Pwi+1 < Pwi

⎧ 
⎨ 
⎩ 

 

   

 λwi−1 / 2 =
λwi−1 if Pwi−1 ≥ Pwi
λwi if Pwi−1 < Pwi

⎧ 
⎨ 
⎩ 

 

 
The right side coefficients are: 
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⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
i

 

 

 Cswoi = −
φi

BoiΔti
 

 

 Cpowi =
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The three derivative terms appearing in the expressions above: 
 

d(1/ Bo)
dP o

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
i
 , 

d(1/ Bw)
dP w

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
i
and 

dPc

dSw
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
i
 

 
are all computed numerically for each time step based on the respective PVT and capillary pressure input tables 
to the model.  
 
 
Boundary conditions 
 
The boundary conditions for multiphase are as for one phase flow, but rates and pressures can be specified for 
each of the phases. Normally, we inject water in a grid block at constant surface rate or at constant bottom hole 
pressure, and produce oil and water from a grid block at constant bottom hole pressure, or at constant surface oil 
rate, or at a constant surface liquid rate. Sometimes we may want to specify constant reservoir voidage rate, 
where either the rate of injection of water is to match a specified rate of liquid production, so that average 
reservoir pressure remains constant, or the liquid production rate is to match a specified water injection rate. 
Constant water injection rate 
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This is the simplest condition to handle, as a water rate term is already included in the water equation. Thus, for a 
constant surface water injection rate of Qwi  (negative) in a well in grid block i: 
 
 ′ q wi = Qwi /(AΔxi ) . 
 
At the end of a time step, after having solved the equations, the bottom hole injection pressure for the well may 
theoretically be calculated using the well equation: 
 
 Qwi = WCiλoi(Pwi − Pbhi ) . 
 
The well constant is defined as for one phase flow: 
 

 

  

WCi =
2πkih

ln( re
rw
)

, 

where rw  is the well radius and the drainage radius is theoretically defined as: 
 

 re =
ΔyΔxi
π

. 

 
However, the fluid injected in a well meets resistance from the fluids it displaces also. Therefore, as a better 
approximation, it is normally accepted to use the sum of the mobilities of the fluids present in the injection block in 
the well equation. Thus, the following well equation is often used for the injection of water in an oil-water system: 
 

 QwiBwi = WCi
kroi
µoi

+
krwi
µ oi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Pwi − Pbhi ) , 

or 

 Qwi = WCi
Boi
Bwi

λoi + λwi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Pwi − Pbhi )  

 
By this approximation, the injection will be controlled by the oil mobility initially, when there is no or little water 
present in the grid block. At a later stage, the water mobility will take over the control. Injection wells are 
frequently constrained by a maximum bottom hole pressure, to avoid fracturing of the formation. This should be 
checked at the end of each time step, and, if necessary, reduce the injection rate, or convert it to a constant bottom 
hole pressure injection well. 
 
Frequently, capillary pressure is neglected in the well equation, particularly in the case of field scale simulation, 
so that the well equation becomes: 
 

 Qwi = WCi
Boi
Bwi

λoi + λwi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Poi − Pbhi ) . 

 
However, in simulation of small scale systems, such as cores used in laboratory experiments, this may lead to 
significant errors. 
 
 
Injection at constant bottom hole pressure 
 
Injection of water at constant bottom hole pressure is achieved either by having constant pressure at the injection 
pump at the surface, or by letting the hydrostatic pressure caused by the well filled with water control the 
injection pressure. The well equation above is again used: 
 

 Qwi = WCi
Boi
Bwi

λoi + λwi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Pwi − Pbhi )  

or 
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 Qwi = WCi
Boi
Bwi

λoi +λwi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Poi − Pbhi )  

 
if the capillary pressure of the injection block is neglected. 
 
Since the (unknown) grid block pressure is included in the well equation, the corresponding terms must be 
included in the appropriate coefficients in the pressure solution. 
 
At the end of the time step, the above equation may be used to compute the actual water injection rate for the 
step. 
 
 
Constant oil production rate 
 
For the oil equation, this condition is handled as for the constant water injection rate. Thus, for a constant surface 
oil production rate of Qoi  (positive) in a well in grid block i : 
 
 ′ q oi = Qoi /(AΔxi ) . 
 
However, in this case oil production will generally be accompanied by water production, so that the water 
equation will have a water production term given by: 
 

 ′ q wi = ′ q oi
λwi(Pwi − Pbhi )
λoi(Poi − Pbhi )

. 

 
In case the capillary pressure is neglected around the production well, the expression simply becomes: 
 

 ′ q wi = ′ q oi
λwi
λoi

. 

 
At the end of a time step, after having solved the equations, the bottom hole production pressure for the well may 
be calculated using the well equation for oil: 
 
 Qoi = WCiλoi(Poi − Pbhi ) . 
 
Production wells are normally constrained by a minimum bottom hole pressure, for lifting purposes in the well. If 
this is reached, the well should be converted to a constant bottom hole pressure well. 
 
The water cut at the surface is: 
 

 fwsi =
′ q wi

′ q wi + ′ q oi
. 

 
Frequently, well rates are constrained by maximum water cut levels, due to limitations in process equipment. If a 
maximum water cut level is exceeded for a well, the highest water cut grid block may be shut in, or the 
production rate may have to be reduced. 
 
 
Constant liquid production rate 
 
Here, a total constant surface liquid production rate of QLi  (positive) is specified for a well in grid block i: 
 
 QLi = Qoi + Qwi , 
 
which, if capillary pressure is neglected, leads to: 
 

 ′ q oi =
λoi

λoi + λwi
QLi /(AΔxi )  
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and 
 

 ′ q wi =
λwi

λoi +λwi
QLi /(AΔxi ) . 

 
Production at constant reservoir voidage rate 
 
This condition may be illustrated by a case of constant surface water injection rate of Qwinj  in some grid block, 
and the total production of liquids from a well in block i is to match the reservoir injection volume so that the 
reservoir pressure remains approximately constant. Thus, 
 
 QoiBoi +QwiBwi = −QwinjBwinj , 
 
which, again assuming that capillary pressure is neglected, leads to: 
 

′ q oi =
λoi

λoiBoi + λwiBwi
(−QwinBwinj ) /(AΔxi )  

 
and 
 

 ′ q wi =
λwi

λoiBoi +λoiBwi
(−QwinjBwinj ) /(AΔxi ) . 

 
 
Production at constant bottom hole pressure 
 
Using a production well in grid block i  with constant bottom hole pressure, Pbhi , as example, we have: 
 
 Qoi = WCiλoi (Poi − Pbhi )  
 
and 
 
 Qwi = WCiλwi(Pwi − Pbhi ) . 
 
Substituting into the flow terms in the flow equations, we thus have: 
 

 ′ q oi =
WCi
AΔxi

λoi(Poi − Pbhi )  

 
and 
 

 ′ q wi =
WCi
AΔxi

λwi(Pwi − Pbhi ) . 

 
Since the rate terms contain unknown block pressures, these will have to be appropriately included in the matrix 
coefficients when solving for pressures. At the end of each time step, actual rates are computed by these 
equations, and water cut is computed as in the previous cases. 
 
 
Solution by IMPES method 
 
In the equations above, oil pressure, Poi , and water saturation, Swi , are the primary variables, and unknowns to 
be solved for. All the coefficients in the equations, transmissibilities as well as storage coefficients, are functions 
of these unknowns. In addition, the capillary pressures on the left side of the water equation are functions of 
saturation. Thus, we cannot solve the equations before the coefficients and the capillary pressures are calculated, 
and we cannot calculate the coefficients and the capillary pressures before the unknown pressures and saturations 
have been solved for. Obviously, a solution method is needed that either iterates on the solution and updates 
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coefficients and capillary pressures until convergence is reached, or some other method for estimating the 
coefficients and the capillary pressures. IMPES is a simple method, but one that is still being used quite 
extensively today, although in decreasing extent. The acronym IMPES stands for IMplicit Pressure, Explicit 
Saturation method, and we will describe this method in detail in the following. 
 
In the IMPES method, the key lies in the approximation of coefficients and capillary pressures. It simply 
evaluates these at time level t , and thus enable us to solve for pressures and saturations without having to iterate 
on the solution. Thus, the following assumptions are made: 
 

Txot ,Txw t

Cpo
t ,Cpw

t

Csot ,Cswt

Pcowt

. 

 
Having made these approximations, the equations become: 
 

Txoi +1/ 2
t Poi +1 − Poi( ) + Txoi−1/ 2

t Poi−1 − Poi( ) − ′ q oi

= Cpooi
t Poi − Poi

t( ) + Cswoi
t Swi − Swi

t( ), i = 1,N
  

 
Txwi+1 / 2

t Poi +1 − Poi( ) − Pcowi +1 − Pcowi( )t[ ]
+Txwi−1 / 2

t Poi−1 − Poi( ) − Pcowi−1 − Pcowi( )t[ ] − ′ q wi

= Cpowi
t Poi − Poi

t( ) + Cswwi
t Swi − Swi

t( ), i = 1,N

 

 
 
IMPES pressure solution 
 
Since water saturation only appear as Swi  on the right sides of the two equations, they may be combined to 
eliminate water saturation completely as an unknown from the equations. Thus, we may obtain a pressure 
equation as: 
 

Txoi+1 / 2
t +α iTxwi +1/ 2

t( ) Poi +1 − Poi( ) + Txoi−1/ 2
t +α iTxwi−1/ 2

t( ) Poi−1 − Poi( )
−α iTxwi +1/ 2

t Pcowi +1 − Pcowi( ) t −α iTxwi−1/ 2
t Pcowi−1 − Pcowi( ) − ′ q oi −α i ′ q wi =

Cpooi
t +α iCpwoi

t( ) Poi − Poi
t( ), i = 1, N

 

 
where 
 
 α i = −Cswwi

t / Cswoi
t . 

 
The pressure equation may now be rewritten as: 
 
 aiPoi−1 + biPoi + ciPoi+1 = di , i = 1, N  

where 
 

ai = Txoi−1/ 2
t +α iTxwi−1 / 2

t   
 
ci = Txoi+1 / 2

t +α iTxwi+1/ 2
t  

 

 
bi = −(Txoi+1/ 2

t + Txoi−1/ 2
t + Cpooi

t )

−α i (Txwi+1 / 2
t +Txwi−1/ 2

t + Cpowi
t )
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di = −(Cpooi

t +α iCpowi
t )Poi

t + ′ q oi + α i ′ q wi

+ α iTxwi+1 / 2
t (Pcowi +1 − Pcowi )

t +α iTxwi−1/ 2
t (Pcowi−1 − Pcowi )

t  

 
Modifications for boundary conditions  
 
We have seen that all rate specified well conditions are included in the rate terms ′ q oi  and ′ q wi . With the 
coefficients involved at old time level, as for all other IMPES coefficients, these rate terms are already 
appropriately included in the di  term above. 
 
For injection of water at bottom hole pressure specified well conditions, we have seen that the following 
expression apply (using the case of neglected capillary pressure as example, however, capillary pressure can 
easily be included): 
 

 Qwi = WCi
Boi
Bwi

λoi + λwi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Poi − Pbhi ) . 

 
In a block with a well of this type, the following matrix coefficients are modified: 
 

 

bi = −(Txoi+1/ 2
t + Txoi+1/ 2

t + Cpooi
t )

−α i Txwi+1 / 2
t +Txwi+1 / 2

t +Cpowi
t +

WCi
AΔxi

Boi
t

Bwi
t λoi

t + λwi
t⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 

 

 
di = −(Cpooi

t +α iCpowi
t )Poi

t − WCi
AΔxi

λoi
t Pbhi −α i

WCi
AΔxi

Boi
t

Bwi
t λoi

t +λwi
t⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Pbhi

+ α iTxwi+1 / 2
t (Pcowi+1 − Pcowi )

t +α iTxwi−1/ 2
t (Pcowi−1 − Pcowi )

t

 

 
For production at bottom hole pressure specified well conditions, we have the following expressions: 
 

 ′ q oi =
WCi
AΔxi

λoi(Poi − Pbhi )  

and 

 ′ q wi =
WCi
AΔxi

λwi(Pwi − Pbhi ) . 

 
In a block with a well of this type, the following matrix coefficients are modified: 
 

 
bi = −(Txoi+1/ 2

t + Txoi+1/ 2
t + Cpooi

t +
WCi
AΔxi

λoi
t )

−α i (Txwi+1 / 2
t +Txwi+1/ 2

t + Cpowi
t + WCi

AΔxi
λwi
t )

 

 

 
di = −(Cpooi

t +α iCpowi
t )Poi

t − WCi
AΔxi

λoi
t Pbhi −α i

WCi
AΔxi

λwi
t Pbhi

+ α iTxwi+1 / 2
t (Pcowi+1 − Pcowi )

t +α iTxwi−1/ 2
t (Pcowi−1 − Pcowi )

t
 

 
The pressure equation may now be solved for oil pressures by using Gaussian elimination as we did in for one 
phase flow. 
 
 
IMPES saturation solution 
 
Having obtained the oil pressures above, we need to solve for water saturations using either the oil equation or 
the water equation. In the following we will use the oil equation for this purpose: 
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Txoi +1/ 2
t Poi +1 − Poi( ) + Txoi−1/ 2

t Poi−1 − Poi( ) − ′ q oi

= Cpooi
t Poi − Poi

t( ) + Cswoi
t Swi − Swi

t( ), i = 1,N
 

 
Since water saturation only appears as an unknown in the last term on the right side of the oil equation, we may 
solve for it explicitly: 
 

 Swi = Swi
t +

1
Cswoi

t Txoi +1/ 2
t Poi +1 − Poi( ) + Txoi−1/ 2

t Poi−1 − Poi( ) − ′ q oi −Cpooi
t Poi − Poi

t( )[ ] , i = 1, N  

 
For grid blocks having pressure specified wells, we make appropriate modifications, as discussed previously: 
 

 
Swi = Swi

t +
1

Cswoi
t [ Txoi+1 / 2t Poi+1 − Poi( ) + Txoi−1/ 2t Poi−1 − Poi( )

− WCi
AΔxi

λoi
t (Poi − Pbhi ) −Cpooi

t Poi − Poi
t( ) ], i = 1, N

 

 
Having obtained oil pressures and water saturations for a given time step, well rates or bottom hole pressures 
may be computed, if needed, from the following expression for an injection well: 
 

 ′ q wi =
WCi
AΔxi

Boi
Bwi

λoi +λwi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Poi − Pbhi ) , 

 
and for a production well: 
 

 ′ q oi =
WCi
AΔxi

λoi(Poi − Pbhi )  

and 

 ′ q wi =
WCi
AΔxi

λwi(Pwi − Pbhi ) . 

 
The surface production well water cut may now be computed as: 
 

 fwsi =
′ q wi

′ q wi + ′ q oi
. 

 
Based on these, we make required adjustments in well rates and well pressures, if constrained by upper or lower 
limits. Then all coefficients are updated before proceeding to the next time step. 
 
Applicability of IMPES method 
 
The approximations made in the IMPES method, namely the evaluation of coefficients at old time level when 
solving for pressures and saturations at a new time level, puts restrictions on the solution which sometimes may 
be severe. Obviously, the greatest implications are on the saturation dependent parameters, relative permeability 
and capillary pressure. These change rapidly with changing saturation, and therefore IMPES may not be well 
suited for problems where rapid variations take place. 
 
IMPES is mainly used for simulation of field scale systems, with relatively large grid blocks and slow rates of 
change. It is normally not suited for simulation of rapid changes close to wells, such as coning studies, or other 
systems of rapid changes. 
 
However, provided that time steps are kept small, IMPES provides accurate and stable solutions to a long range 
of reservoir problems.  
 
 


