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DIRECT SOLUTION OF LINEAR SETS OF EQUATIONS 
 
As an illustration of solution of linear equations, consider the following set of 3 equations: 
 
 a11x1+a12x2+a13x3 = d1       ( 1) 
 
 a21x1+a22x2+a23x3 = d2       ( 2) 
 
 a31x1+a32x2+a33x3 = d3       ( 3) 
 
The Gauss elimination method starts by multiplying Eqn. (1) by -a21/a11, and then adds the resulting equation to 
Eqn. (2). The new Eqn. (2) becomes: 
 
 ′a22x2+ ′a23x3 = ′d2  
 
Next step is to multiply Eqn. (1) by   -a31/ a11 and then add the resulting equation to Eqn. (3). The new Eqn. (3) 
becomes: 
 

 ′a32x2+ ′a33x3 = ′d3  
 

The set of equations has now become: 
 

a11x1+a12x2+a13x3 = d1      ( 4) 

 ′a22x2+ ′a23x3 = ′d2       ( 5)  

 ′a32x2+ ′a33x3 = ′d3       ( 6) 

The next step is to multiply Eqn. (5) by   - ′ a 32/ ′ a 22 and then add the resulting equation to Eqn. (6). Our set of 
equations is now: 

 a11x1+a12x2+a13x3=d1       ( 7) 

 ′a22x2+ ′a23x3= ′d2       ( 8) 

 ′′a33x3= ′′d3       ( 9) 

The above elimination process is called forward elimination. Eqn. (9) can now be solved directly for x3 : 

 x3 = ′′d3 / ′′a33       ( 10) 

We shall now perform a backward substitution. This simply means that as each unknown is computed, it is 
substituted into the equation above, and a additional unknown can be found. For Eqs. (7) and (8), this is done as 
follows: 
 
 x2 = ( ′d2 - ′a23x3 ) / ′a22         ( 11) 
 

 x1 = (d1 - a12x2 - a13x3 ) / a11       ( 12) 

Based on the procedure above, a general formula for solving a set of equations consisting of n equations and n 
unknowns using Gaussian elimination method may be derived: 
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1) Forward elimination 
 

aij  = aij  + akj  -aik / akk( ), j = k +1,n( ), i = k +1,n⎡⎣ ⎤⎦ , k =1,n -1{ }  

 
di = di + dk -aik / akk( ) , i = k +1,n( ), k = 1,n −1⎡⎣ ⎤⎦  

 
2) Backward substitution 

 

xi = di − aij x j
j=i+1

n

∑
⎛

⎝⎜
⎞

⎠⎟
/ aii , i = n,...,1  

 
 
Banded coefficient matrix for regular grid systems 
 
The one-dimensional finite difference equations derived for the following grid system 
 

i-1 i i+1 N1

 
 
we generally solve the 3-diagonal pressure equation 
 
 aiPoi−1 + biPoi + ciPoi+1 = di , i = 1, N  

 
Graphically, the coefficient matrix may be presented as 
 

b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b c
a b  

 
As can be seen, the compact band of this coefficient matrix only consists of 3 non-zero diagonals. Thus, our 
Gaussian elimination algorithm may be simplified to operate only on the band itself, as shown in the following: 
 

Forward elimination, i=2,N 
 

 

bi = bi − ci−1 ai / bi−1( )

di = di − di−1 ai / bi−1( )
 

 
Computation of PN 

 
PN = dN /bN  
 

Backward substitution, i=N-1,1 
 

  Pi = di − ciPi+1 /bi . 
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For a two-dimensional grid system 
 

j

Ny

i

i,j i+1,ji-1,j

i,j-1

i,j+1

Nx1

1

 
the set of linear equations to be solved for pressures is 
 

ei, jPi, j−1 + ai, jPi−1, j + bi, jPi, j + ci, jPi+1, j + fi, jPi, j+1 = di, j i = 1,Nx , j = 1,Ny
 

 
Again, we have a banded matrix, but now with 5 non-zero diagonals. The band is not compact, as the two outer 
diagonals are positioned apart from the rest. For numbering along the i-direction, we get the coefficient matrix at 
right below:  

 
b c f
a b c f
a b c f
a b c f
a b c f
a b c f
a b f

e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b f
e b c f
e a b c
e a b c
e a b c
e a b c
e a b c
e a b   

 
The bandwidth of the above system may be computed as 
 
 Nb = 2Nx + 1 
 
If we had numered the grid blocks along the j-direction instead of along the i-direction as we did above, the 
coefficients e and a, and f and c, would have changed places: 
 
 

b c f
a b c f
a b c f
a b c f
a b c f
a b c f
a b f

e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b f
e b c f
e a b c
e a b c
e a b c
e a b c
e a b c
e a b   

 
 
 and the bandwidth would have become 
 

1 2 3 4 5 6 7

8 9 10 12 13 1411

15 16 17 19 20 2118

22 23 24 26 27 2825

29 30 31 33 34 3532  

1 6 11 16 21 26 31

2 7 12 22 27 3217

3 8 13 23 28 3318

4 9 14 24 29 3419

5 10 15 25 30 3520
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 Nb = 2Ny +1  
 
Since the number of operations involved in a Gaussian elimination solutions is approximately 
 
 no. of operations ≈ Nb

2NxNy , 
 
it is important to number the grid system along the shortest direction. A check of this may be included in the 
Gaussian elimination algorithm. 
 
Even though the matrix contains only 5 non-zero diagonals, the zeros between the diagonals will quickly be 
filled during the forward elimination process. Therefore, we need to let the elimination process include the entire 
band. Banded elimination routines are readily available1, and will not be discussed more here.  
 
For a three-dimensional grid system 
 

k

Nz

i

i,j,k i+1,j,ki-1,j,k

i,j,k-1

i,j,k+1

Nx1

1

j
Ny

1  
the set of linear equations to be solved for pressures has 7 non-zero diagonals on the left hand side: 
 

gi, j ,kPi, j ,k−1 + ei, j ,kPi, j−1,k + ai, j ,kPi−1, j ,k + bi, j ,kPi, j ,k

+ ci, j ,kPi+1, j ,k + fi, j ,kPi, j+1,k + hi, j ,kPi, j ,k+1 = di, j ,k i = 1,Nx , j = 1,Ny ,k = 1,Nz

 

 
resulting in the following coefficient structure:  
 

g

h

f

e
a  b  c

 
 
The bandwidth of the three-dimensional system, if numbered along the x- and z-directions first, may be 
computed as 
 

                                                
1 Press, W. H. et al.: Numerical Receipes in Fortran, 2nd. Ed., Cambridge, N.Y., 1992, p.22 
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 Nb = 2NxNz +1  
 
Again, in order to reduce the bandwidth, and thus the number of operations involved in the solution, we should 
number the smallest plane first. For this system, the number of operations is approximately 
 
 no. of operations ≈ 4Nx

3NyNz
3 . 

 
Thus, even for small systems in three dimensions, the number of operations becomes large. For instance, for a 
small 1000 block system whereNx = Ny = Nz = 10 , the number of operations for a single solution is around 40 
millions. Therefore, direct solution is normally limited to small systems. For large systems, iterative methods are 
required. 
 
 
Coefficient matrix for circular grids 
 
A two-dimensional grid that requires special attention is the r-θ  system shown below. 
 

37
38

39
40

41

42

31
3233

34
3536

43
44

45

46

47

48

 2  3  4
 5

 6

8
9

10
11

12

1420
26

15 21

27

16 22

28

17 23

29

1824

30

1
7131925 i

j

 
 

The set of linear equations for this system is, of course, identical to the one for the two-dimensional, rectangular 
coordinates system: 
 

ei, jPi, j−1 + ai, jPi−1, j + bi, jPi, j + ci, jPi+1, j + fi, jPi, j+1 = di, j i = 1,Nx , j = 1,Ny
 

 
The numbering sequence used in the example above is similar to the one used for the rectangular system below: 
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j

1

2

3

4

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

1 2 3 4 5 6

i5

6

7

8

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

1 2 3 4 5 6

i  
However, there is a significant difference in the coefficient matrix structures of these two grids. While all f-
coefficients are zero for row 8 in the case of the rectangular grid, the equivalent "row" in the cylindrical case is 
connected to "row" 1. Thus, the structure of the coefficient matrix for the cylindrical grid becomes: 
 

b c f e
a b c f e
a b c f e
a b c f e
a b c f e
a b f e

e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f

f e b c
f e a b c
f e a b c
f e a b c
f e a b c
f e a b  

 
Although the required modifications to the banded Gaussian elimination routine are minor, most standard routines 
do not have provisions for this type of structure. 
 
 
Effects of wells on coefficient matrix 
 
Using the rectangular grid above as example, and single phase flow, let us add a well to the grid, with 
perforations in all grid blocks of row J: 
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j

1

2

3

4

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

1 2 3 4 5 6

i5

6

7

8

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

1 2 3 4 5 6

i

Q

 
The coefficient matrix of this system will of course be affected by the well. In case the production rate is 
constant, the bottom hole pressure will be an additional unknown that must be included in the solution. We add a 
term to the linear equations: 
 

ei, jPi, j−1 + ai, jPi−1, j + bi, jPi, j + ci, jPi+1, j + fi, jPi, j+1 +wi, jPJ
bh = di, j i = 1,Nx , j = 1,Ny

 

 
where 
  wi, j ≠ 0   for perforated grid blocks, 

and 
  wi, j = 0   for non-perforated grid blocks, 

 
In addition, we add a well constraint equation to the system of equations: 
 
  QJ = qi,J

perf
∑  

where 
  qi, J = WCi, Jλi,J (Pi,J − PJ

bh)  

 
The well term will of course also alter the b-term of the linear equation. 
 
With the well term included in the discrete flow equations, and adding a well constraint equation, the system of 
linear equations become: 
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b c f
a b c f
a b c f
a b c f
a b c f
a b f

e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f w
e b c f w
e a b c f w
e a b c f w
e a b c f w
e a b c f w
e a b c f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e b c f
e a b c f
e a b c f
e a b c f
e a b c f
e a b c f
e b c
e a b c
e a b c
e a b c
e a b c
e a b

x x x x x x x  
 
 
Again, the required modifications to the banded Gaussian elimination routine are minor, at least for the simple case 
above, but most standard routines do not have provisions for this type of structure. 
 


