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ONE-DIMENSIONAL, ONE-PHASE RESERVOIR SIMULATION 
 
 
Fluid systems 
 
The term single phase applies to any system with only one phase present in the reservoir. In some cases it may also 
apply where two phases are present in the reservoir, if one of the phases is immobile, and no mass exchange takes 
place between the fluids. This is normally the case where immobile water is present with oil or with gas in the 
reservoir. By regarding the immobile water as a fixed part of the pores, it can be accounted for by reducing porosity 
and modifying rock compressibility correspondingly.  
 
Normally, in one phase reservoir simulation we would deal with one of the following fluid systems: 
 

1. One phase gas 
2. One phase water 
3. One phase oil 

 
Before proceeding to the flow equations, we will briefly define the fluid models for these three systems. 
 
 
One phase gas 
 
The gas must be single phase in the reservoir, which means that crossing of the dew point line is not permitted in 
order to avoid condensate fallout in the pores. Fluid behavior is governed by our Black Oil fluid model, so that 
 

 ρg =
ρgs

Bg
= constant

Bg
. 

 
 
One phase water 
 
One phase water, which strictly speaking means that the reservoir pressure is higher than the saturation pressure of 
the water in case gas is dissolved in it, has a density described by: 
 

 ρw =
ρws

Bw
= constant

Bw
. 

 
 
One phase oil 
 
In order for the oil to be single phase in the reservoir, it must be undersaturated, which means that the reservoir 
pressure is higher than the bubble point pressure. In the Black Oil fluid model, oil density is described by: 
 

 ρo =
ρoS + ρgSRso

Bo
. 

 
For undersaturated oil,  is constant, and the oil density may be written: 
 

 ρo =
constant
Bo

. 

 
 
General form 
 
Thus, for all three fluid systems, the one phase density may be expressed as: 
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 ρ = constant
B

, 

 
which is the model we are going to use for the fluid description in the following single phase flow equations. 
 
Partial differential form of single phase flow equation 
 
We have previously derived the continuity equation for a one phase, one-dimensional system of constant cross-
sectional area to be: 
 

− ∂
∂ x

ρu( ) = ∂
∂ t

φρ( ) . 

 
The conservation of momentum for low velocity flow in porous materials is assumed to be described by the semi-
empirical Darcy's equation, which for one dimensional, horizontal flow is: 
 

u = − k
µ
∂P
∂ x

. 

 
Using the fluid model defined above: 
 

 ρ = constant
B

, 

 
and substituting the Darcy's equation and the fluid equation into the continuity equation, and including a 
source/sink term, we obtain the partial differential equation that describes single phase flow in a one dimensional 
porous medium: 
 

 
∂
∂ x

k
µB

∂P
∂x

⎛
⎝⎜

⎞
⎠⎟
− ′q = ∂

∂ t
φ
B

⎛
⎝⎜

⎞
⎠⎟

 

 
The left hand side of the equation describes fluid flow in the reservoir, and injection/production, while the right 
hand side represent storage (compressibilities of rock and fluid). In order to bring the right hand side of the 
equation on a form with pressure as a primary variable, we will rearrange the term before proceeding to the 
numerical solution. 
 
Chain rule differentiation yields: 
 

 
∂
∂ t

φ
B

⎛
⎝⎜

⎞
⎠⎟ =

1
B
∂φ
∂t

+φ ∂(1 / B)
∂t

 

 
We will now make use of the compressibility definition for porosity's dependency of pressure at constant 
temperature: 
 

 cr =
1
φ
dφ
dP

, 

or 

 
dφ
dP

= φcr , 

 
and the fluid model above: 
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 ρ = constant
B

, 

 
which implies that: 
 
 B = f (P) . 
 
The right hand side may then be written: 
 

∂
∂ t

φ
B

⎛
⎝⎜

⎞
⎠⎟ =

1
B
∂φ
∂t

+φ ∂(1 / B)
∂t

= 1
B
dφ
dP

∂P
∂t

+φ d(1 / B)
dP

∂P
∂t

=
φcr
B

∂P
∂t

+φ d(1 / B)
dP

∂P
∂t

 

 
Thus, the flow equation becomes: 
 

 
∂
∂ x

k
µB

∂P
∂x

⎛
⎝⎜

⎞
⎠⎟
− ′q = φ cr

B
+ d(1 / B)

dP
⎡
⎣⎢

⎤
⎦⎥
∂P
∂t

 

 
Recall that the fluid compressibility may be defined in terms of the formation volume factor as: 
 

cf = B
d(1 / B)
dP

. 

 
Then, an alternative form of the flow equation is: 
 

 
∂
∂ x

k
µB

∂P
∂x

⎛
⎝⎜

⎞
⎠⎟
− ′q = φ

B
cr + cf⎡⎣ ⎤⎦

∂P
∂t

= φcT
B

∂P
∂t

 

 
However, normally it is more convenient to use the first form, since fluid compressibility not necessarily is 
constant, and since formation volume factor vs. pressure data is standard input to reservoir simulators. 
 
 
Difference form of the flow equation 
 
We will now use the discretization formulas derived previously to transform our partial differential equation to 
difference form. For convenience, we will now drop the time index for unknown pressures, so that if no time index 
is specified, t + Δt  is implied. 
 
 
Left side term 
 
The single phase flow term, 
 

 
∂
∂ x

k
µB

∂P
∂x

⎛
⎝⎜

⎞
⎠⎟

 

 
is of the form: 
 

 
∂
∂ x

f (x)∂P
∂ x

⎡
⎣⎢

⎤
⎦⎥

, 

 
which we previously derived the following approximation for: 
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∂
∂ x

f (x)∂P
∂ x

⎡
⎣⎢

⎤
⎦⎥i
=
2 f (x)i+1/2

(Pi+1 − Pi )
(Δxi+1 + Δxi )

− 2 f (x)i−1/2
(Pi − Pi−1)
(Δxi + Δxi−1)

Δxi
+O(Δx) . 

 
Thus, in terms of the actual flow equation above, we have: 
 

∂
∂ x

k
µB

∂P
∂ x

⎛
⎝⎜

⎞
⎠⎟ i
=
2 k

µB
⎛
⎝⎜

⎞
⎠⎟ i+1/2

(Pi+1 − Pi )
(Δxi+1 + Δxi )

− 2 k
µB

⎛
⎝⎜

⎞
⎠⎟ i−1/2

(Pi − Pi−1)
(Δxi + Δxi−1)

Δxi
+O(Δx) . 

 
We shall now define transmissibility as being the coefficient in front of the pressure difference appearing in the 
approximation above: 
 
 
Transmissibility in plus direction 
 

 Txi+1/2 =
2

Δxi (Δxi+1 + Δxi )
k
µB

⎛
⎝⎜

⎞
⎠⎟ i+1/2

 

 
 
Transmissibility in minus direction 
 

 Txi−1/2 =
2

Δxi (Δxi−1 + Δxi )
k
µB

⎛
⎝⎜

⎞
⎠⎟ i−1/2

.  

 
Then, the difference form of the flow term in the partial differential equation becomes: 
 

 
∂
∂ x

k
µB

∂P
∂ x

⎛
⎝⎜

⎞
⎠⎟ i

≈ Txi+1/2 (Pi+1 − Pi )+Txi−1/2 (Pi−1 − Pi ) . 

 
Using Txi+1/2  as example, the transmissibility consists of three groups of parameters: 
 

 
2

Δxi (Δxi+1 + Δxi )
= constant , 

 
 ki+1/2 = k = f (x),  
 

1
µB

⎛
⎝⎜

⎞
⎠⎟ i+1/2

= 1
µB

⎛
⎝⎜

⎞
⎠⎟
= f (P).  

 
We therefore need to determine the forms of the two latter groups before proceeding to the numerical solution. 
Starting with Darcy's equation: 
 

 q = − kA
µB

∂P
∂x

. 

 
For flow between two grid blocks: 
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We will assume that the flow is steady state, i.e. q=constant, and that k is dependent on position. The equation may 
be rewritten as: 
 

 q dx
k

= −A dP
µB

. 

 
 
Permeability 
 
We now integrate the equation above between block centers: 
 

 q dx
ki

i+1

∫ = −A dP
µBi

i+1

∫  

 
The left side may be integrated in parts over the two blocks in our discrete system, each having constant 
permeability: 
 

 q dx
ki

i+1

∫ = q
2

Δxi
ki

+ Δxi+1
ki+1

⎛
⎝⎜

⎞
⎠⎟

 

We may write, defining an average permeability, : 
 

 
q
2

Δxi
ki

+ Δxi+1
ki+1

⎛
⎝⎜

⎞
⎠⎟
= q
2
Δxi + Δxi+1

k
 

 
yielding 
 

 k = Δxi + Δxi+1
Δxi
ki

+ Δxi+1
ki+1

⎛
⎝⎜

⎞
⎠⎟

 

 
which is the harmonic average of the two permeabilities. In terms of our grid block system, we then have the 
following expressions for the harmonic averages: 
 

 k = ki+1/2 =
Δxi+1 + Δxi
Δxi+1
ki+1

+ Δxi
ki

 

 
and 

k = ki−1/2 =
Δxi−1 + Δxi
Δxi−1
ki−1

+ Δxi
ki

. 

 
 

 

i + 1
2 i + 1i

1
2 Δxi

1
2 Δxi+1

q
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Fluid mobility term 
 
We want to integrate the right hand side: 
 

 −A dP
µBi

i+1

∫  

 

Replacing the fluid parameters by mobility λ = 1
µB

, and letting be a weak function of pressure, and assuming 

the pressure gradient between the block centers to be constant, we find that the weighted average of the blocks' 
mobility terms is representative of the average. First, we will define the fluid mobility term as. Then, the average 
mobility terms are: 
 

λi+1/2 =
Δxi+1λi+1 + Δxiλi( )

Δxi+1 + Δxi( )  

 
and 
 

λi−1/2 =
Δxi−1λi−1 + Δxiλi( )

Δxi−1 + Δxi( ) . 

 
 
Right side term 
 
The discretization of the right side term 
 

 φ cr
B
+ d(1 / B)

dP
⎡
⎣⎢

⎤
⎦⎥
∂P
∂t

 

 
is done by using the backward difference approximation derived previously: 
 

 (∂P
∂ t
)i ≈

Pi − Pi
t

Δt
. 

 
We will now define a storage coefficient as: 
 

 Cpi =
φi
Δt

cr
B
+ d(1 / B)

dP
⎡
⎣⎢

⎤
⎦⎥i

 

 
and the right side approximation becomes: 
 

 φ cr
B
+ d(1 / B)

dP
⎡
⎣⎢

⎤
⎦⎥
∂P
∂t

≈Cpi (Pi − Pi
t )  

 
Thus, the difference form of the single phase flow equation is (for convenience, the approximation sign is hereafter 
replaced by an equal sign): 
 
 Txi+1/2 (Pi+1 − Pi )+Txi−1/2 (Pi−1 − Pi )− ′qi = Cpi (Pi − Pi

t ), i = 1,N . 
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Boundary conditions and production/injection terms 
 
We have previously discussed the two types of boundary conditions we can assign, the pressure specification 
(Dirichlet condition) and the rate condition (Neumann condition). For the simple one phase equation that we 
considered initially, we assumed these to be specified at either the end of the system and derived corresponding 
approximations of the flow term for these grid blocks. However, in reservoir simulation the boundary conditions 
normally are no flow boundaries at the end faces of the reservoir, and production/injection wells where either rate 
or pressure are specified, located in any of the grid blocks. 
 
 
 
No flow boundaries 
 
No flow at the boundaries are assigned by giving the respective transmissibility a zero value at that point. This is 
the default condition. For our one-dimensional system, this type of condition would for example be applied to the 
two end blocks so that: 
 
 Tx1/2 = 0  
 
 TxN+1/2 = 0 . 
 
 
Production/injection wells 
 
We will now introduce a well term in our difference equation, so that it becomes: 
 

Txi+1/2 (Pi+1 − Pi )+Txi−1/2 (Pi−1 − Pi )− ′qi = Cpi (Pi − Pi
t ), i = 1,N . 

 
The well rate term will be zero for all blocks that do not have a well in it, and nonzero where there is a well. Since 
our equation is formulated on a per volume basis, the flow rate  must also be on a per volume basis. It is defined 
as positive for production wells and negative for injection wells. 
 
Constant well production rate, Qi 

 
For a constant well rate of  at surface conditions, which is the most common well rate specification, the per 
volume rate becomes: 
 

 ′qi =
Qi

AΔxi
. 

 
If the well is specified to have a constant well rate of  at reservoir conditions, the per volume rate becomes: 
 

 ′qi =
Qi

BiAΔxi
. 

 
 
Constant well bottom-hole pressure 
 

For a well producing or injecting at a constant bottom hole pressure, Pbhi , the well rate is computed the following 
equation: 
 

 ′qi =
Qi

AΔxi
= WCiλi (Pi − Pbhi )

AΔxi
= wciλi (Pi − Pbhi ) , 
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where WCi  is the the well constant, or the productivity or injectivity index of the well, and  the same on a per 
volume basis. The well constant may be specified externally, based on productivity or injectivity tests of the well, 
or it may be computed from Darcy's equation. If the well is in the middle of the grid block, one may assume radial 
flow into the well, with block volume as the drainage volume: 
 

 WCi =
2πkih

ln( re
rw
)

, 

where 	rw  is the wellbore radius, and the drainage radius may theoretically be defined as: 
 

 re =
ΔyΔxi
π

. 

 
However, in reservoir simulation this formula is normally written as: 
 

 re = c ΔyΔxi  
 
Where the value c may vary depending on well location inside the grid block. A commonly used formula is the one 
derived by Peaceman: 
 

 re = 0.20 ΔyΔxi  
 
For the simple linear case, with a well is at the end of the system, at the left or right faces, the well constant would 
be computed from the linear Darcy's equation: 
 

 WCi =
kiA

Δxi / 2
. 

 
 
Solution of the difference equation 
 
Now we have a set of N equations with N unknowns, which must be solved simultaneously. In deriving the 
difference equation we have implicitly assumed that all terms of the equation are evaluated at time . This 
assumption applies to the coefficients as well as the pressures on the left side of the equation. However, one may 
question the numerical correctness of this since the approximation of the time derivative on the right hand side then 
becomes a first order backward difference. If instead the terms were to be evaluated at , the time derivative 
would become a second order approximation, central in time, and thus a more accurate approximation. Such a 
formulation is known as a Crank-Nicholson formulation. Since the pressure solution of such a formulation often 
exhibits oscillatory behavior, it is normally not used in reservoir simulation, and we will therefore not pursue it 
further here.  
 
Since the left and right hand side terms of the equation are at time , the coefficients are functions of the 
unknown pressure. In the transmissibility terms, both viscosity and formation volume factor are pressure 
dependent, and in the storage terms the derivative of the inverse formation volume factor depends on pressure. 
Therefore, an obvious procedure would be to iterate on the pressure solution, letting the coefficients lag one 
iteration behind and updating them after each iteration until convergence is obtained. 
 
However, in single phase flow the pressure dependency of the coefficients is small, and such iteration is normally 
not necessary. For now we will therefore make the approximation that the transmissibilities and the storage 
coefficients with sufficient accuracy can be evaluated at the block pressures at the previous time step. 
The set of equations may be rewritten on the form: 
 
 aiPi−1 + biPi + ciPi+1 = di , i = 1, ...,N  

where 
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 a1 = 0   
 
 ai = Txi−1/ 2, i = 2,...,N  

 
 b1 = −Txi+1/ 2 −Cpi  
 
 bi = −Txi−1/ 2 − Txi+1 / 2 −Cpi i = 2, ...,N − 1   

 
 bN = −Txi−1/ 2 −Cpi  
 
 ci = Txi+1 / 2, i = 1, ...,N − 1  

  
cN = 0  

 
 d1 = − 3

4 αP1
t − 2PL  

 
 di = −CpiPi

t + ′ q i , i = 1, ...,N  

 
In order to account for production and injection, the following modifications would have to be done for grid blocks 
having production or injection wells:  
 
 
Rate specified  in a well in block i 
 
In this case, no actual modification has to be made, since  is already included in the  term. However, after 
computing the pressures, the actual bottom hole pressure may be computed from the well equation: 
 
 qi = wciλi (Pi − Pbhi )  
 
 
Bottom hole pressure specified in a well in block i 
 
Here, we make use of the well equation, with  being constant: 
 
 qi = wciλi (Pi − Pbhi ) , 
 
and include the appropriate parts in the  and terms: 
 
 bi = −Txi−1/2 −Txi+1/2 −Cpi −wciλi  
 
 di = −CpiPit +wciλiPbhi  
 
The well constants are computed as specified above. 
 
 
Well head pressure specified for a well in block i 
 
Frequently, we want to specify a wellhead pressure, , instead of a bottomhole pressure in a well, reflecting 
conditions of surface equipment. In order to include such a condition in our equation, we need to convert it to a 
bottom hole pressure condition. A well bore model is therefore needed to compute pressure drop in the well bore as 
function f rate, friction, etc. 
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Finally, the linear set of equations, including boundary conditions and well rates an pressures, may be solved for 
average block pressures using for instance the Gaussian elimination method for the time step in question. We then 
update the coefficients and proceed to the next time step. 
 
 
 


