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DISCRETIZATION OF THE FLOW EQUATIONS 
 
As we already have seen, finite difference approximations of the partial derivatives appearing in the flow equations 
may be obtained from Taylor series expansions. We shall now proceed to derive approximations for all terms needed 
in reservoir simulation. 
 
Spatial discretization 
 
Constant grid block sizes 
 
We showed that the approximation of the second derivative of pressure may be obtained by forward and backward 
expansions of pressure: 
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which applies to the following grid system: 
 

 
Variable grid block sizes 
 
A more realistic grid system is one of variable block lengths, which will be the case in most simulations. Such a grid 
would enable finer description of geometry, and better accuracy in areas of rapid changes in pressures and saturations, 
such as in the neighborhood of production and injection wells. For the simple one-dimensional system, a variable 
grid system would be: 
 

 
the Taylor expansions become (dropping the time index): 
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An important difference is now that the error term is of only first order, due to the different block sizes. 

However, normally the flow terms in our simulation equations will be of the type ¶
¶

¶
¶x
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P
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, where f x( )  includes 

permeability, mobility and flow area. Therefore, we will instead derive a central approximation for the first 
derivative, and apply it twice to this flow term. 
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which yields 
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Similarly, we may obtain the following expressions: 
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As we can see, due to the different block sizes, the error terms for the last two approximations are again of first order 
only. By inserting these expressions into the previous equation, we get the following approximation for the flow 
term: 
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Boundary conditions 
 
We have seen earlier that we have two types of boundary conditions, Dirichlet, or pressure condition, and Neumann, 
or rate condition. If we first consider a pressure condition at the left side of our slab, as follows: 
 

 
then we will have to modify our approximation of the first derivative at the left face, i = 1 2/ , to become a forward 
difference instead of a central difference: 
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and the flow term approximation thus becomes: 
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With a pressure PR  specified at the right hand face, we get a similar approximation for block N : 
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For a flow rate specified at the left side (injection/production), 
 

  
we make use of Darcy's equation: 
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Then, by substituting into the approximation, we get: 
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With a rateQR  specified at the right hand face, we get a similar approximation for block N : 
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For the case of a no-flow boundary between blocks QR  and QR , the flow terms for the two blocks become: 
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Time discretization 
 
We showed earlier that by expansion backward in time: 
 

 P(x,t ) = P(x,t +Δt ) +
−Δt
1!
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(−Δt)2

2!
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′ ′ ′ P (x,t +Δ t) + ..... 

 
the following backward difference approximation with first order error term is obtained: 
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An expansion forward in time: 
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yields a forward approximation, again with first order error term: 
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Finally, expanding in both directions: 
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we get a central approximation, with a second order error term: 
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The time approximation used as great influence on the solutions of the equations. Using the simple case of the 
flow equation and constant grid size as example, we may write the difference form of the equation for the three 
cases above. 
 
 
Explicit formulation 
 
Here, we use the forward approximation of the time derivative at time level t . Hence, the left hand side is also 
at time level QR , and we can solve for pressures explicitly: 
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As discussed previously, this formulation has limited stability, and is therefore seldom used. 
 
 
Implicit formulation 
 
Here, we use the backward approximation of the time derivative at time level QR , and thus left hand side is 
also at time level QR : 
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Now we have a set of N equations with N unknowns, which must be solved simultaneously, for instance using the 
Gaussian elimination method. The formulation is unconditionally stable. 
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Crank-Nicholson formulation 
 
Finally, by using the central approximation of the time derivative at time level QR , and thus left hand side is 
also at time level QR : 
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The resulting set of linear equations may be solved simultaneously just as in the implicit case. The formulation is 
unconditionally stable, but may exhibit oscillatory behavior, and is seldom used. 
 
 


